query interface + archive refactoring

This commit is contained in:
gauthiier 2016-07-22 10:17:44 +02:00
parent 80164970b3
commit ce1527c094
2 changed files with 289 additions and 251 deletions

View File

@ -3,6 +3,7 @@ import pandas as pd
import email, email.parser
import os, datetime, json, gzip, re
from random import randint
import query
def format_from(from_str):
from_addr = email.utils.parseaddr(from_str)[1]
@ -97,9 +98,8 @@ def json_data_to_pd_dataframe(json_data):
return df
def load_from_file(filename, archive_dir):
def load_from_file(filename, archive_dir, json_data=None):
json_data = None
if not filename.endswith('.json.gz'):
file_path = os.path.join(archive_dir, filename + '.json.gz')
else:
@ -141,263 +141,18 @@ def load_from_file(filename, archive_dir):
class Archive:
data = None # "raw" json data
dataframe = None # main pd dataframe
activity = None # (very) sparse dataframe (index=date(month), columns=from, values=activity(month))
content_length = None # (very) sparse dataframe (index=date(month), columns=from, values=content-length(month in bytes))
threads = None
def __init__(self, data="nettime-l", archive_dir="archives"):
if isinstance(data, pd.core.frame.DataFrame):
self.dataframe = data.copy()
if isinstance(data, str):
self.dataframe = load_from_file(data, archive_dir)
'''
activity
'''
def _activity(self):
if self.activity is None:
from_index = self.dataframe.reindex(columns=['from'])
self.activity = from_index.groupby([pd.TimeGrouper(freq='M'), 'from']).size().unstack('from').fillna(0)
return self.activity
def activity_from(self, email_address, resolution='M'):
eaddr = email_address.replace('@', '{at}').lower()
self._activity()
try:
if resolution.lower() == 'm':
return self.activity[eaddr]
elif resolution.lower() == 'y':
y = self.activity[eaddr].resample('AS').sum()
y.index = y.index.year
return y
else:
return None
except KeyError:
return None
def activity_overall(self, resolution='M'):
self._activity()
try:
sum_activity_month = self.activity.sum(axis=1)
if resolution.lower() == 'm':
sum_activity_month.rename
return sum_activity_month
elif resolution.lower() == 'y':
y = sum_activity_month.resample('AS').sum()
y.index = y.index.year
return y
else:
return None
except:
return None
def activity_from_ranking(self, resolution='M', rank=5, filter_nettime=True):
# finish this -- re resolution AND filtering
self._activity()
afr = self.activity.sum(axis=0).order(ascending=False)
if filter_nettime:
p = r'^((?!nettime*).)*$'
afr = afr[afr.index.str.contains(p)]
return afr[:rank]
def plot_activity_from_ranking(self, resolution='y', rank=5, figsize=(8, 7)):
activity_rank = self.activity_from_ranking(rank=rank).keys()
series = []
for k in activity_rank:
series.append(self.activity_from(k, resolution))
df = pd.concat(series, axis=1)
colors = np.random.rand(len(df),3)
if figsize:
df.plot(colors=colors, figsize=figsize)
else:
df.plot(colors=colors)
'''
content lenght
'''
def _content_length(self):
if self.content_length is None:
from_content_index = self.dataframe.reindex(columns=['from', 'content-length'])
self.content_length = from_content_index.groupby([pd.TimeGrouper(freq='M'), 'from']).sum()
self.content_length = self.content_length.reset_index().pivot(columns='from', index='date', values='content-length').fillna(0)
return self.content_length
def content_length_from(self, email_address, resolution='M'):
eaddr = email_address.replace('@', '{at}').lower()
self._content_length()
try:
if resolution.lower() == 'm':
return self.content_length[eaddr]
elif resolution.lower() == 'y':
y = self.content_length[eaddr].resample('AS').sum()
y.index = y.index.year
return y
else:
return None
except KeyError:
return None
def content_length_overall(self):
self._content_length()
try:
sum_content_length_month = self.content_length.sum(axis=1)
if resolution.lower() == 'm':
return sum_content_length_month
elif resolution.lower() == 'y':
y = sum_content_length_month.resample('AS').sum()
y.index = y.index.year
return y
else:
return None
except:
return None
def content_length_from_ranking(self, resolution='M', rank=5, filter_nettime=True):
# finish this -- re resolution
self._content_length()
cfr = self.content_length.sum(axis=0).order(ascending=False)
if filter_nettime:
p = r'^((?!nettime*).)*$'
cfr = cfr[cfr.index.str.contains(p)]
return cfr[:rank]
def plot_content_length_from_ranking(self, resolution='y', rank=5, figsize=(8, 7)):
content_rank = self.content_length_from_ranking(rank=rank).keys()
series = []
for k in content_rank:
series.append(self.content_length_from(k, resolution))
df = pd.concat(series, axis=1)
colors = np.random.rand(len(df),3)
if figsize:
df.plot(colors=colors, figsize=figsize)
else:
df.plot(colors=colors)
'''
threads
'''
def _threads(self, thresh=0):
if self.threads is None:
self.threads = self.dataframe[self.dataframe['nbr-references'] > thresh].reindex(columns=['from','nbr-references','subject', 'url', 'message-id']).sort_values('nbr-references', ascending=False)
return self.threads;
def threads_ranking(self, rank=5):
self._threads()
return self.threads.drop('message-id', axis=1)[:rank]
def threads_from(self, email_address, resolution='y'):
freq = 'M'
if resolution.lower() == 'y':
freq = 'AS'
elif resolution.lower() == 'm':
freq = 'M'
else:
return None
self._threads()
eaddr = email_address.replace('@', '{at}').lower()
self._threads()
threads_from = self.threads.reindex(columns=['from', 'nbr-references'])
threads_from_ranking = threads_from.groupby([pd.TimeGrouper(freq=freq), 'from']).sum()
threads_from_ranking = threads_from_ranking.reset_index().pivot(columns='from', index='date', values='nbr-references').fillna(0)
return threads_from_ranking[eaddr]
def threads_from_ranking(self, rank=5, filter_nettime=True):
self._threads()
threads_from = self.threads.reindex(columns=['from', 'nbr-references'])
threads_from_ranking = threads_from.groupby([pd.TimeGrouper(freq='AS'), 'from']).sum()
threads_from_ranking = threads_from_ranking.reset_index().pivot(columns='from', index='date', values='nbr-references').fillna(0)
tfr = threads_from_ranking.sum(axis=0).order(ascending=False)
if filter_nettime:
p = r'^((?!nettime*).)*$'
tfr = tfr[tfr.index.str.contains(p)]
return tfr[:rank]
def plot_threads_from_ranking(self, resolution='y', rank=5, figsize=(8, 7)):
threads_rank = self.threads_from_ranking(rank=rank).keys()
series = []
for k in threads_rank:
series.append(self.threads_from(k, resolution))
df = pd.concat(series, axis=1)
colors = np.random.rand(len(df),3)
if figsize:
df.plot(colors=colors, figsize=figsize)
else:
df.plot(colors=colors)
def threads_overall(self, resolution='y', aggregate='sum', tresh=0):
freq = 'M'
if resolution.lower() == 'y':
freq = 'AS'
elif resolution.lower() == 'm':
freq = 'M'
else:
return None
agg = aggregate.lower()
if not agg in ['sum', 'mean']:
return None
if not self.threads is None:
del self.threads
self.threads = None
self._threads(tresh)
if agg == 'sum':
y = self.threads.groupby([pd.TimeGrouper(freq=freq)]).sum()
else:
y = self.threads.groupby([pd.TimeGrouper(freq=freq)]).mean()
if freq == 'AS':
y.index = y.index.year
return y
self.dataframe = load_from_file(data, archive_dir, self.data)
def query(self):
q = query.Query(self)
return q

283
nettime/query.py Normal file
View File

@ -0,0 +1,283 @@
import numpy as np
import pandas as pd
import archive
import logging, html
class Query:
netarchive = None # nettime.archive.Archive object
activity = None # (very) sparse dataframe (index=date(month), columns=from, values=activity(month))
content_length = None # (very) sparse dataframe (index=date(month), columns=from, values=content-length(month in bytes))
threads = None # ...
def __init__(self, arch=None):
if not isinstance(arch, archive.Archive):
logging.error("Query constructor Error: arch must be of type nettime.archive.Archive")
raise Exception()
self.netarchive = arch
'''
activity
'''
def _activity(self):
if self.activity is None:
from_index = self.netarchive.dataframe.reindex(columns=['from'])
self.activity = from_index.groupby([pd.TimeGrouper(freq='M'), 'from']).size().unstack('from').fillna(0)
return self.activity
def activity_from(self, email_address, resolution='M'):
eaddr = email_address.replace('@', '{at}').lower()
self._activity()
try:
if resolution.lower() == 'm':
return self.activity[eaddr]
elif resolution.lower() == 'y':
y = self.activity[eaddr].resample('AS').sum()
y.index = y.index.year
return y
else:
return None
except KeyError:
return None
def activity_overall(self, resolution='M'):
self._activity()
try:
sum_activity_month = self.activity.sum(axis=1)
if resolution.lower() == 'm':
sum_activity_month.rename
return sum_activity_month
elif resolution.lower() == 'y':
y = sum_activity_month.resample('AS').sum()
y.index = y.index.year
return y
else:
return None
except:
return None
def activity_from_ranking(self, resolution='M', rank=5, filter_nettime=True):
# finish this -- re resolution AND filtering
self._activity()
afr = self.activity.sum(axis=0).order(ascending=False)
if filter_nettime:
p = r'^((?!nettime*).)*$'
afr = afr[afr.index.str.contains(p)]
return afr[:rank]
def plot_activity_from_ranking(self, resolution='y', rank=5, figsize=(8, 7)):
activity_rank = self.activity_from_ranking(rank=rank).keys()
series = []
for k in activity_rank:
series.append(self.activity_from(k, resolution))
df = pd.concat(series, axis=1)
colors = np.random.rand(len(df),3)
if figsize:
df.plot(colors=colors, figsize=figsize)
else:
df.plot(colors=colors)
'''
content lenght
'''
def _content_length(self):
if self.content_length is None:
from_content_index = self.netarchive.dataframe.reindex(columns=['from', 'content-length'])
self.content_length = from_content_index.groupby([pd.TimeGrouper(freq='M'), 'from']).sum()
self.content_length = self.content_length.reset_index().pivot(columns='from', index='date', values='content-length').fillna(0)
return self.content_length
def content_length_from(self, email_address, resolution='M'):
eaddr = email_address.replace('@', '{at}').lower()
self._content_length()
try:
if resolution.lower() == 'm':
return self.content_length[eaddr]
elif resolution.lower() == 'y':
y = self.content_length[eaddr].resample('AS').sum()
y.index = y.index.year
return y
else:
return None
except KeyError:
return None
def content_length_overall(self):
self._content_length()
try:
sum_content_length_month = self.content_length.sum(axis=1)
if resolution.lower() == 'm':
return sum_content_length_month
elif resolution.lower() == 'y':
y = sum_content_length_month.resample('AS').sum()
y.index = y.index.year
return y
else:
return None
except:
return None
def content_length_from_ranking(self, resolution='M', rank=5, filter_nettime=True):
# finish this -- re resolution
self._content_length()
cfr = self.content_length.sum(axis=0).order(ascending=False)
if filter_nettime:
p = r'^((?!nettime*).)*$'
cfr = cfr[cfr.index.str.contains(p)]
return cfr[:rank]
def plot_content_length_from_ranking(self, resolution='y', rank=5, figsize=(8, 7)):
content_rank = self.content_length_from_ranking(rank=rank).keys()
series = []
for k in content_rank:
series.append(self.content_length_from(k, resolution))
df = pd.concat(series, axis=1)
colors = np.random.rand(len(df),3)
if figsize:
df.plot(colors=colors, figsize=figsize)
else:
df.plot(colors=colors)
'''
threads
'''
def _threads(self, thresh=0):
if self.threads is None:
self.threads = self.netarchive.dataframe[self.netarchive.dataframe['nbr-references'] > thresh].reindex(columns=['from','nbr-references','subject', 'url', 'message-id']).sort_values('nbr-references', ascending=False)
return self.threads;
def threads_ranking(self, rank=5, output=None):
self._threads()
data = self.threads.drop('message-id', axis=1)[:rank]
data['date'] = data.index
if output is None:
return data
elif output == 'string':
return data.to_string()
elif output == 'html':
h = html.HTML()
t = h.table()
r = t.tr
r.td('date', klass='td_date_t')
r.td('from', klass='td_from_t')
r.td('replies', klass='td_rep_t')
r.td('subject', klass='td_subject_t')
for i, row in data.iterrows():
r = t.tr
r.td(str(row['date']), klass='td_date')
r.td(row['from'], klass='td_from')
r.td(str(row['nbr-references']), klass='td_rep')
r.td('', klass='td_subject').text(str(h.a(row['subject'], href=row['url'])), escape=False)
return str(t)
else:
return None
def threads_from(self, email_address, resolution='y'):
freq = 'M'
if resolution.lower() == 'y':
freq = 'AS'
elif resolution.lower() == 'm':
freq = 'M'
else:
return None
self._threads()
eaddr = email_address.replace('@', '{at}').lower()
self._threads()
threads_from = self.threads.reindex(columns=['from', 'nbr-references'])
threads_from_ranking = threads_from.groupby([pd.TimeGrouper(freq=freq), 'from']).sum()
threads_from_ranking = threads_from_ranking.reset_index().pivot(columns='from', index='date', values='nbr-references').fillna(0)
return threads_from_ranking[eaddr]
def threads_from_ranking(self, rank=5, filter_nettime=True):
self._threads()
threads_from = self.threads.reindex(columns=['from', 'nbr-references'])
threads_from_ranking = threads_from.groupby([pd.TimeGrouper(freq='AS'), 'from']).sum()
threads_from_ranking = threads_from_ranking.reset_index().pivot(columns='from', index='date', values='nbr-references').fillna(0)
tfr = threads_from_ranking.sum(axis=0).order(ascending=False)
if filter_nettime:
p = r'^((?!nettime*).)*$'
tfr = tfr[tfr.index.str.contains(p)]
return tfr[:rank]
def plot_threads_from_ranking(self, resolution='y', rank=5, figsize=(8, 7)):
threads_rank = self.threads_from_ranking(rank=rank).keys()
series = []
for k in threads_rank:
series.append(self.threads_from(k, resolution))
df = pd.concat(series, axis=1)
colors = np.random.rand(len(df),3)
if figsize:
df.plot(colors=colors, figsize=figsize)
else:
df.plot(colors=colors)
def threads_overall(self, resolution='y', aggregate='sum', tresh=0):
freq = 'M'
if resolution.lower() == 'y':
freq = 'AS'
elif resolution.lower() == 'm':
freq = 'M'
else:
return None
agg = aggregate.lower()
if not agg in ['sum', 'mean']:
return None
if not self.threads is None:
del self.threads
self.threads = None
self._threads(tresh)
if agg == 'sum':
y = self.threads.groupby([pd.TimeGrouper(freq=freq)]).sum()
else:
y = self.threads.groupby([pd.TimeGrouper(freq=freq)]).mean()
if freq == 'AS':
y.index = y.index.year
return y