nettime/lib/archive.py
2016-07-07 16:11:08 +02:00

318 lines
8.2 KiB
Python

import numpy as np
import pandas as pd
import email, email.parser
import os, datetime, json, gzip, re
from random import randint
def format_from(from_str):
from_addr = email.utils.parseaddr(from_str)[1]
if '{AT}' not in from_addr:
tok = from_str.split()
try:
at = tok.index('{AT}')
from_addr = ''.join(tok[at-1:at+2])
if from_addr.startswith('<') or from_addr.endswith('>'):
from_addr = from_addr.strip('<').strip('>')
except ValueError:
return None
return from_addr.lower()
def format_date(date_str):
try:
date_tz = email.utils.parsedate_tz(date_str)
time_tz = email.utils.mktime_tz(date_tz) #utc timestamp
except TypeError:
print "Format Date TypeError"
print " > " + date_str
return None
except ValueError:
print "Format Date ValueError"
print " > " + date_str
return None
dt = datetime.datetime.fromtimestamp(time_tz)
try:
pdt = pd.to_datetime(dt)
return pdt
except pd.tslib.OutOfBoundsDatetime:
print 'time out of bound'
print dt
return None
def message_to_tuple_record(msg, records, references=None):
# check date first?
date_time = format_date(msg['date'])
if not date_time:
return
# filter date?
nettime_min_date = pd.to_datetime('01/10/1995', format='%d/%m/%Y')
nettime_max_date = pd.to_datetime(datetime.datetime.now())
if date_time < nettime_min_date or date_time > nettime_max_date:
return None
# check / filter from email address second?
from_addr = format_from(msg['from'])
if not from_addr:
return
records.append((msg['message-id'],
from_addr,
msg['author_name'],
msg['subject'],
date_time,
msg['url'],
len(msg['content']),
0 if not msg.has_key('follow-up') else len(msg['follow-up']),
references))
if msg.has_key('follow-up'):
for f in msg['follow-up']:
message_to_tuple_record(f, records, references=msg['message-id'])
return
def json_data_to_pd_dataframe(json_data):
records = []
for d in json_data:
for dd in d['threads']:
message_to_tuple_record(dd, records)
df = pd.DataFrame.from_records(records,
index='date',
columns=['message-id',
'from',
'author',
'subject',
'date',
'url',
'content-length',
'nbr-references',
'references'])
df.index.name = 'date'
return df
def load_from_file(filename, archive_dir):
json_data = None
if not filename.endswith('.json.gz'):
file_path = os.path.join(archive_dir, filename + '.json.gz')
else:
file_path = os.path.join(archive_dir, filename)
if os.path.isfile(file_path):
with gzip.open(file_path, 'r') as fp:
json_data = json.load(fp)
return json_data_to_pd_dataframe(json_data['threads'])
else:
#list of all "filename[...].json.gz" in archive_dir
files = sorted([f for f in os.listdir(archive_dir) if os.path.isfile(os.path.join(archive_dir, f)) and f.startswith(filename) and f.endswith('.json.gz')])
if files:
filename = files[-1] # take the most recent (listed alpha-chronological)
file_path = os.path.join(archive_dir, filename)
if os.path.isfile(file_path):
with gzip.open(file_path, 'r') as fp:
json_data = json.load(fp)
return json_data_to_pd_dataframe(json_data['threads'])
else:
#list of all json files in archive_dir/filename
dir_path = os.path.join(archive_dir, filename)
if not os.path.isdir(dir_path):
return None
files = [os.path.join(dir_path, f) for f in os.listdir(dir_path) if os.path.isfile(os.path.join(dir_path, f)) and f.endswith('.json')]
if not files:
return None
# load all json files
threads = []
for file_path in files:
with open(file_path, 'r') as fp:
json_data = json.load(fp)
threads.append(json_data)
return json_data_to_pd_dataframe(threads)
class Archive:
data = None # "raw" json data
dataframe = None # main pd dataframe
activity = None # (very) sparse dataframe (index=date(month), columns=from, values=activity(month))
content_length = None # (very) sparse dataframe (index=date(month), columns=from, values=content-length(month in bytes))
threads = None
def __init__(self, data="nettime-l", archive_dir="archives"):
if isinstance(data, pd.core.frame.DataFrame):
self.dataframe = data.copy()
if isinstance(data, str):
self.dataframe = load_from_file(data, archive_dir)
'''
activity
'''
def _activity(self):
if self.activity is None:
from_index = self.dataframe.reindex(columns=['from'])
self.activity = from_index.groupby([pd.TimeGrouper(freq='M'), 'from']).size().unstack('from').fillna(0)
return self.activity
def activity_from(self, email_address, resolution='M'):
eaddr = email_address.replace('@', '{at}').lower()
self._activity()
try:
if resolution.lower() == 'm':
return self.activity[eaddr]
elif resolution.lower() == 'y':
y = self.activity[eaddr].resample('AS').sum()
y.index = y.index.year
return y
else:
return None
except KeyError:
return None
def activity_overall(self, resolution='M'):
self._activity()
try:
sum_activity_month = self.activity.sum(axis=1)
if resolution.lower() == 'm':
return sum_activity_month
elif resolution.lower() == 'y':
y = sum_activity_month.resample('AS').sum()
y.index = y.index.year
return y
else:
return None
except:
return None
def activity_from_ranking(self, resolution='M', rank=5, filter_nettime=True):
# finish this -- re resolution AND filtering
self._activity()
afr = self.activity.sum(axis=0).order(ascending=False)
if filter_nettime:
p = r'^((?!nettime*).)*$'
afr = afr[afr.index.str.contains(p)]
return afr[:rank]
def plot_activity_from_ranking(self, resolution='y', rank=5, figsize=(8, 7)):
activity_rank = self.activity_from_ranking(rank=rank).keys()
series = []
for k in activity_rank:
series.append(self.activity_from(k, resolution))
df = pd.concat(series, axis=1)
colors = np.random.rand(len(df),3)
if figsize:
df.plot(colors=colors, figsize=figsize)
else:
df.plot(colors=colors)
'''
content lenght
'''
def _content_length(self):
if self.content_length is None:
from_content_index = self.dataframe.reindex(columns=['from', 'content-length'])
self.content_length = from_content_index.groupby([pd.TimeGrouper(freq='M'), 'from']).sum()
self.content_length = self.content_length.reset_index().pivot(columns='from', index='date', values='content-length').fillna(0)
return self.content_length
def content_length_from(self, email_address, resolution='M'):
eaddr = email_address.replace('@', '{at}').lower()
self._content_length()
try:
if resolution.lower() == 'm':
return self.content_length[eaddr]
elif resolution.lower() == 'y':
y = self.content_length[eaddr].resample('AS').sum()
y.index = y.index.year
return y
else:
return None
except KeyError:
return None
def content_length_overall(self):
self._content_length()
try:
sum_content_length_month = self.content_length.sum(axis=1)
if resolution.lower() == 'm':
return sum_content_length_month
elif resolution.lower() == 'y':
y = sum_content_length_month.resample('AS').sum()
y.index = y.index.year
return y
else:
return None
except:
return None
def content_length_from_ranking(self, resolution='M', rank=5, filter_nettime=True):
# finish this -- re resolution
self._content_length()
cfr = self.content_length.sum(axis=0).order(ascending=False)
if filter_nettime:
p = r'^((?!nettime*).)*$'
cfr = cfr[cfr.index.str.contains(p)]
return cfr[:rank]
def plot_content_length_from_ranking(self, resolution='y', rank=5, figsize=(8, 7)):
content_rank = self.content_length_from_ranking(rank=rank).keys()
series = []
for k in content_rank:
series.append(self.content_length_from(k, resolution))
df = pd.concat(series, axis=1)
colors = np.random.rand(len(df),3)
if figsize:
df.plot(colors=colors, figsize=figsize)
else:
df.plot(colors=colors)
'''
threads
'''
def _threads(self):
if self.threads is None:
self.threads = self.dataframe[self.dataframe['nbr-references'] > 0].reindex(columns=['from','nbr-references','subject', 'url', 'message-id']).sort_values('nbr-references', ascending=False)
return self.threads;
def threads_ranking(self, rank=5):
self._threads()
return self.threads.drop('message-id', axis=1)[:rank]