nettime/bin/nettime_report.py
gauthiier fd358cfe03 bin/
2016-12-31 11:33:32 +01:00

183 lines
5.4 KiB
Python

import nettime.query
import nettime.format
import nettime.plot
class Report:
query = None
matrix = None
def __init__(self, q=None):
if not isinstance(q, nettime.query.Query):
logging.error("HtmlFormat constructor Error: query must be of type nettime.query.Query")
raise Exception()
self.query = q
'''
(basic) stats
'''
def matrix_msgs_threads(self):
if self.matrix is None:
# nbr messages
mat = self.query.activity_overall()
# nbr threads
mat['nbr-threads'] = self.query.threads_overall(aggregate='count')['nbr-threads']
# nbr replies
mat['nbr-replies'] = self.query.threads_overall(aggregate='sum')['nbr-references']
# nbr non-replies (aka. non-threads)
mat['nbr-single-messages'] = mat['nbr-messages'] - mat['nbr-replies'] - mat['nbr-threads']
# avg. rep per message
mat['avg--per-msg'] = mat['nbr-threads'] / mat['nbr-messages']
# avg. rep per thread
mat['avg-rep-per-thrd'] = mat['nbr-replies'] / mat['nbr-threads']
# same as:
# mat['avg-rep-per-thrd'] = q.threads_overall(aggregate='mean')['nbr-references']
self.matrix = mat
return self.matrix
'''
plots
'''
def plot_nbr_msgs(self, title='Nbr. Messages', label='messages', color='mediumblue'):
self.matrix_msgs_threads()
return nettime.plot.bar_plot_series(self.matrix['nbr-messages'].to_frame(label), title=title, color=color)
def plot_nbr_threads(self, title='Nbr. Threads', label='threads', color='crimson'):
self.matrix_msgs_threads()
return nettime.plot.bar_plot_series(self.matrix['nbr-threads'].to_frame(label), title=title, color=color)
def plot_nbr_replies(self, title='Nbr. Replies in Threads', label='replies', color='dimgray'):
self.matrix_msgs_threads()
return nettime.plot.bar_plot_series(self.matrix['nbr-replies'].to_frame(label), title=title, color=color)
def plot_avg_rep_p_msg(self, title='Avg. Thread per Message', label='replies-per-messasges', color='limegreen'):
self.matrix_msgs_threads()
return nettime.plot.bar_plot_series(self.matrix['avg--per-msg'].to_frame(label), title=title, color=color)
def plot_avg_rep_p_thrd(self, title='Avg. Replies per Thread', label='replies-per-thread', color='blueviolet'):
self.matrix_msgs_threads()
return nettime.plot.bar_plot_series(self.matrix['avg-rep-per-thrd'].to_frame(label), title=title, color=color)
def plot_msgs_replies(self, title='Nbr. Messages segments (individual messages vs thread replies)'):
self.matrix_msgs_threads()
return nettime.plot.bar_plot_series(self.matrix[['nbr-single-messages', 'nbr-threads', 'nbr-replies']], color=['mediumblue', 'red', 'dimgray'], title=title)
'''
text (tabular)
'''
def tab_msgs_threads_replies(self):
self.matrix_msgs_threads()
return nettime.format.Tab.from_dataframe(self.matrix[['nbr-messages', 'nbr-threads', 'nbr-replies']],
name_map={'nbr-messages': 'messages', 'nbr-threads': 'threads', 'nbr-replies': 'replies in threads'})
def tab_avg_rep_msg_thrd(self):
self.matrix_msgs_threads()
return nettime.format.Tab.from_dataframe(self.matrix[['avg--per-msg', 'avg-rep-per-thrd']],
name_map={'avg--per-msg': 'avg. thread per message', 'avg-rep-per-thrd': 'avg. replies per thread'})
def tab_activity_from_ranking(self, rank=5):
d = self.query.activity_from_ranking(rank=rank)
return nettime.format.Tab.from_dataframe(d, name_map={'nbr-messages': 'messages'})
def tab_content_length_from_ranking(self, rank=5):
d = self.query.activity_from_ranking(rank=rank)
return nettime.format.Tab.from_dataframe(d, name_map={'nbr-bytes': 'bytes'})
def tab_threads_ranking(self, rank=5):
d = self.query.threads_ranking(rank=rank)
return nettime.format.Tab.from_dataframe(d, name_map={'nbr-references': 'nbr. replies'})
def tab_threads_ranking_year(self, rank=5, resolution='y'):
d = self.query.threads_ranking(rank=rank, resolution=resolution)
years = sorted(d)
nl = '\n'
s = ""
for i in years:
s += 'year: ' + i + nl
s += nettime.format.Tab.from_dataframe(d[i], name_map={'nbr-references': 'nbr. replies'}) + nl
return s + nl
'''
html
'''
def html_msgs_threads_replies(self):
self.matrix_msgs_threads()
return nettime.format.Html.from_dataframe(self.matrix[['nbr-messages', 'nbr-threads', 'nbr-replies']],
name_map={'nbr-messages': 'messages', 'nbr-threads': 'threads', 'nbr-replies': 'replies in threads'})
def html_avg_rep_msg_thrd(self):
self.matrix_msgs_threads()
return nettime.format.Html.from_dataframe(self.matrix[['avg--per-msg', 'avg-rep-per-thrd']],
name_map={'avg--per-msg': 'avg. thread per message', 'avg-rep-per-thrd': 'avg. replies per thread'})
def html_activity_from_ranking(self, rank=5):
html = nettime.format.Html(self.query)
return html.threads_ranking(rank=rank)
def html_content_length_from_ranking(self, rank=5):
d = self.query.activity_from_ranking(rank=rank)
return nettime.format.Html.from_dataframe(d, name_map={'nbr-bytes': 'bytes'})
def html_threads_ranking(self, rank=5):
d = self.query.threads_ranking(rank=rank)
return nettime.format.Html.from_dataframe(d, name_map={'nbr-references': 'nbr. replies'}, url_map={'subject': 'url'})
def html_threads_ranking_year(self, rank=5, resolution='y'):
d = self.query.threads_ranking(rank=rank, resolution=resolution)
years = sorted(d)
nl = '\n'
s = ""
for i in years:
s += '<div class="year_t">' + i + '</div>' + nl
s += nettime.format.Html.from_dataframe(d[i], name_map={'nbr-references': 'nbr. replies'}, url_map={'subject': 'url'}) + nl
return s + nl