Waspmote Data Frame

Programming Guide

waspP
libelium MoTe

=

maoTe
Index
Document Version: v4.1 - 04/2013
© Libelium Comunicaciones Distribuidas S.L.
INDEX
1. General Considerations 3
1.1, WASPMOLE FIAME FIlES et sssissessessns 3
1.2, CONSTIUCTON w.euvrrereirererereneeasesseaessesssssesssssesssesssssessessessessssssssssssssssssssssssesssssessssssssssssssssasssstasesssssessssssssssssssssasssssasesssssssssssssssssssssanes 3
.30 AP UNCHIONS .ottt sttt sssssssssss e s ssss s s s e b s s s e b s s s s et e A s e s R aen b s R e s b basn bt e basn s sanbas 3
1.4, PredefiNEd CONSTANTSovurverceeeessess st sesssessstssnsssnsssssssssessssssssssssssnssssssssnns 3
2. Frame Structureccccccccnessrecccssscccnnnsssssncsssssonsassssssasns 4
2.1. ASCll Frame eeeteteeeiee ittt a et ARt et AR AR AR oA AR AR AR AR Rt e bbb AR e AR n At bttt s aes 4
2.1 T ASCIHEAUET ouuerveeissiesrereeissssssissessssssssssess 4
2.1.2. ASCII PAYIOAM c.ceririiriereereiseisseissessesssssssssssssessssssssssssssesssssssssssssssssessessssssssssssssssssssssssssssess 5
2.2.Binary Frame ettt bR R R R AR AR R AR Rt s st s bbb aes 6
2.2.T. BINATY HEAET c..uuvesrerteeseississsessisssissssssasssessssssssssssssssessssssssssessssssssssnss 6
2.2.2. BINATY PAYIO@d....couciieeeieriseiiseniesiseesseesecss e ssssssasesssessssssssesssessssssasssasesssssasesssessssssasesssesssessasesssesssessasesasessesses 7
2.3 FIAM@ TYPES et isensessessess s s ssse s sse e sas s s s sse s s s bbb es st s st s s b b s bbbt s st s s st b s s s b b sassaen 7
2.4, SENSON FIEIAS ...ttt ssss s s sss s ssss s sssssssssss s s s s b s s et AR bR b bRt e b s ssn s e n s s an b senes 8

3. Usage ©000 1 2

3.1. Setting the Waspmote Identifier w12

3.2. Creating NEW FramES ... neneinsississsees .12

3.3. Setting the Frame Size .. .12

3.4. Setting the Frame Type. .14

3.5. Adding Sensor Fields..... .15

3.6. Adding New Sensor types .16

3.7. Showing the actual Frame 16

4, Code examples 17
5. Documentation ChaNgelog.......cccveiceieicsnrecicnnncssnnicscnsnessnsnessnsnessssessassessssssssssassssassssasssssssssssssssssess 18
-2- V4.1

General Considerations

1. General Considerations

1.1. Waspmote Frame Files

WaspFrame.h, WaspFrame.cpp, WaspFrameConstants.h

It is mandatory to include the WaspFrame library when using this class. The following line must be introduced at the beginning
of the code:

#include <WaspFrame.h>

Libelium recommends the use of the official Data Frame format, explained in this guide. It is especially good for the projects
with a Meshlium, because it can parse frames in an automatic way thanks to the feature “Sensor Parser”.

1.2. Constructor

To start using the Waspmote Frame library, an object from the ‘WaspFrame’ class must be created. This object, called frame,
is created inside the Waspmote Frame library and it is public to all libraries. It is used through the guide to show how the
Waspmote Frame library works.

When creating this constructor, some variables are defined with a value by default.

1.3. APl functions

Through this guide there are many examples of the WaspFrame class usage. In these examples, API functions are called to
execute the commands, storing in their related variables the parameter value in each case.

Example of use

{

frame.createFrame(); // create a new frame

}

1.4. Predefined constants

There are some predefined constants in a file called ‘WaspFrame.h’ These constants define some parameters like the maximum
size of each frame:

MAX_FRAME: (default value 150) specifies the maximum size of the frames to be created.
ASCII: this constant is used to define an ASCIl frame mode.

BINARY: this constant is used to define a Binary frame mode.

EXAMPLE_FRAME: defines an example frame type.

TIMEOUT_FRAME: defines a timeout frame type.

EVENT_FRAME: defines an event frame type.

ALARM_FRAME: defines an alarm frame type.

SERVICE1_FRAME: defines a service1 frame type.

SERVICE2_FRAME: defines a service2 frame type.

Besides, there are sensor TAGs defined for each kind of sensor. These labels are used to set different fields inside the frame in
order to distinguish between different sensor values and identify them.

-3- v4.1

Frame Structure

2. Frame Structure

There are two kind of frames: ASCIl and Binary.

2.1. ASCIl Frame

These frames are supposed to facilitate the comprehension of the data to be sent. As the frame is composed by ASCII characters
is easier to understand all the fields included within the payload.

It is possible to identify two different parts inside the frame. The first one corresponds to the header and its structure is always
the same. The second one corresponds to the payload and it is where the sensor values are included.

The following figure describes the ASCIl Frame structure:

HEADER PAYLOAD
<=> | Frame Type | Num Fields | # | Serial ID | # | Waspmote ID | # | Sequence | # | Sensor_1 | # | Sensor_2 | # | | Sensor_n | #

Figure 1: ASCII Frame structure

2.1.1. ASCIl Header

The structure fields are described below with an example:

HEADER PAYLOAD
<=>| 0x80 | Ox03 | # | 35690284 | # | NODE_001 | # 214 | # | Temp:35 | # | GPS:31.200;42.100 | # | DATE:12-01-01 | #
A B C D E D F D G D | sensor1 | D sensor2 D sensor3 D

Figure 2: ASCIl Frame example

A — Start Delimiter [3 Bytes]: It is composed by three characters: “<=>"This is a 3-Byte field and it is necessary to identify each
frame starting.

B — Frame Type Byte [1 Bytel: This field is used to determine the frame type. There are two kind of frames: Binary and ASCII.
But it also defines the aim of the frame such event frames or alarm frames. This field will be explained in the following sections.

C — Number of Fields Byte [1 Bytel: This field specifies the number of sensor fields sent in the frame. This helps to calculate
the frame length.

D — Separator [1 Byte]: The ‘# character defines a separator and it is put before and after each field of the frame.

E — Serial ID [10 Bytes]: This is at most a 10-Byte field which identifies each Waspmote device uniquely. The serial ID is get from
a specific chip integrated in Waspmote that gives a different identifier to each Waspmote device. So, it is only readable and it
can not be modified.

F — Waspmote ID [0Byte-16Bytes]: This is a string defined by the user which may identify each Waspmote inside the user’s
network. The field size is variable [from 0 to 16Bytes]. When the user do not want to give any identifier, the field remains empty
between frame’s separators: “##".

G — Frame sequence [1Byte-3Bytes]: This field indicates the number of sequence frame. This counter is 8-bit, so it goes from 0
to 255. However, as it is an ASCII frame, the number is converted to a string so as to be understood. This is the reason the length
of this field varies between one and three bytes. Each time the counter reaches the maximum 255, it is reset to 0. This sequence
number is used in order to detect loss of frames.

Note: There is only one frame counter, so in the case two communication modules are used, this counter is incremented each time a
new frame is created. If each module needs to create a new frame, the counter will be incremented by 2 in the same loop, one for each
frame creation.

4- v4.1

Frame Structure

2.1.2. ASCII Payload

The frame payload is composed by several sensor data. All data sent in these fields correspond to a predefined sensor data type
in the sensor table. This sensor table is stored in Meshlium (gateway of the network) and it will be used in order to interact with
the database.

There are three types of ASCIl sensor fields:

- Simple Data: Sensor field is composed by a unique data. The format is: “sensor_label:value” and a separator character [#] is
set at the end of the value. For example, a temperature field indicating 23°C would be as follows:

#TC:23#

Complex Data: This is the format used to send data composed by two or three values. The format is: “sensor_
label:value;value;value” and a separator character [#] is set at the end of the last value. Accelerometer and GPS measurements
are some examples:

#ACC:996;-250;-100#

#GPS:41.680616;-0.886233#

Special Data: Date and time are defined in a special format.

Date is defined as “yy-mm-dd” where:
-yy:year
- mm: month
- dd: day of month

Example: #DATE:13-01-01#

Time is formatted as “hh-mm-ss+GMT” where:

- hh: hours

- mm: minutes

- ss: seconds

- GMT: GMT is added after hh-mm-ss. It is possible to avoid this information in order to save frame size.

Example without GMT: #TIME:12-24-16#
Example with GMT: #TIME:12-24-16+14#

-5- v4.1

Frame Structure

2.2. Binary Frame

This frame type has been designed to create more compressed frames. The main goal of defining binary fields is to save bytes in
frame’s payload in order to send as much information as possible. The main disadvantage is the legibility of the frame.

As the ASCII frames, the Binary frames are also composed by two different parts: header and payload. The header of the Binary
frame is quite similar to the ASCIl frame except for the frame sequence number and the separator at the end of the header.

The following figure describes the Binary Frame structure:

HEADER PAYLOAD

<=> | Frame Type | Num Fields | Serial ID | Waspmote ID | # | Sequence | Sensor_1 | Sensor_2 | | Sensor_n

Figure 3: Binary Frame structure

2.2.1. Binary Header

The structure fields are described below with an example:

HEADER PAYLOAD
<=> | 0x00 | 0x03 | 0x74F94515 | NODE 001 | # | 0x00 | ID | Byte1 | Byte2 | ID | Byte 1 | Byte2 | ID | Byte 1 | Byte2
A B C E F D G Sensor 1 Sensor 2 Sensor 3

Figure 4: Binary Frame example

A — Start Delimiter [3 Bytes]: It is composed by three characters: “<=>"This is a 3-Byte field and it is necessary to identify each
frame starting.

B — Frame Type Byte [1Bytel]: This field is used to determine the frame type. There are two kind of frames: Binary and ASCII.
But it also defines the aim of the frame such event frames or alarm frames. This field will be explained in the following sections.

C — Number of Fields Byte [1Byte]: This field specifies the number of sensor fields sent in the frame. This helps to calculate
the frame length.

D — Separator [1Bytel: The'# character defines a separator and it is put between some fields which length is not specified. This
helps to parse the different fields in reception.

E — Serial ID [4Byte]: This is a 4-Byte field which identifies each Waspmote device uniquely. The serial ID is get from a specific
chip integrated in Waspmote that gives a different identifier to each Waspmote device. So, it is only readable and it can not be
modified. Note that the Serial ID is sent as a binary field too.

F — Waspmote ID [variable]: This is a string defined by the user which may identify each Waspmote inside the user’s network.
The field size is variable [from 0 to 16Bytes]. When the user do not want to give any identifier, the field remains empty indicated
by a unique ‘#' character.

G — Frame sequence [1Byte]: This field indicates the number of sent frame. This counter is 8-bit, so it goes from 0 to 255. Each
time it reaches the maximum 255 is reset to 0. This sequence number is used in order to detect loss of frames.

Note: There is only one frame counter, so in the case two communication modules are used, this counter is incremented each time a
new frame is created. If each module needs to create a new frame, the counter will be incremented by 2 in the same loop, one for each
frame creation.

-6- v4.1

Frame Structure

2.2.2,. Binary Payload

The frame payload might be composed by several sensor data. All data sent in these fields correspond to a predefined sensor
data type in the sensor table. Regarding the binary format, each sensor in the sensor table determines the number of necessary
bytes to express the sensor value. The sensor table is stored in Meshlium (gateway of the network) and it will be used in order
to interact with the database.

There are three types of Binary sensor fields:

« Simple Data: The sensor field is composed by a unique data. The format of this field is: the first byte codifies the sensor
type. Following the first byte and according to the sensor table, there is a number of bytes which correspond to the sensor
value. For example, the temperature sensor is a float number, so it is a 4-byte field. Thus, the sensor field for 27°C will be set
as follows:

ID (1 Byte) Byte1 Byte2 | Byte3 | Byte4
SENSOR_TCA 0x00 0x00 0xD8 0x41

Figure 5: Binary simple sensor field
Note: Floats are codified so they are not a simple conversion.

. Complex Data: This is the format used to send data composed by more than one value. The format of this field is: the first
byte codifies the sensor type. Then, the different values are codified using as many bytes as they specify in the sensor table.
For example, the GPS field is composed by both latitude and longitude floats, which means that 8 bytes are needed for both
float values:

ID (1 Byte) Byte1 Byte2 | Byte3 | Byte4 | Bytel Byte2 | Byte3 | Byte4
SENSOR_GPS 0x59 0x9D 0x26 0x42 OxEO 0x10 0x61 OxBF

Figure 6: Binary complex sensor field

Note: Floats are codified so they are not a simple conversion.

« String: This is the only field that is formed differently: the first byte codifies the sensor type, the second byte defines the
string length, and the rest of the bytes belong to the string itself according to the length previously defined. For example,
the string “hello” is formatted as follows:

ID (1 Byte) Length | Bytel (‘h’) | Byte2 (‘e’) | Byte3 (‘l') | Byte4 (‘') | Byte5 (‘o)
SENSOR_STR 0x05 0x68 0x65 0x6C 0x6C Ox6F

Figure 7: Binary string sensor field

2.3. Frame Types

As it was said before, there is a specific field in the header which specifies the frame type. This field is defined by a byte noted as
the sequence of the following bits: b b b.b,b.b b b :

6547372710

b7: The most significant bit specifies if the frame is ASCII (b7=1) or Binary (b7=0).

b,-b,: The rest of the bits determine the frame type which might be an event frame, a time out frame, etc.

-7- v4.1

wasP

moTte
Frame Structure
Frame Types
Frame Type Byte R Identifier Description
bit7 bit6-bit0 value
0000000 0 Example Regular frame for examples
0000001 1 TimeOut Frame sent when time is out
0000010 2 Event Frame sent when an event occurs
0000011 3 Alarm Frame sent when an alarm occurs
0000100 4 Servicel Frame for “keep alive” advertisement
0000101 5 Service2 Frame for “low battery” advertisement
6to0 99 Reserved types
1100100 100 INITIAL_PACKET Transmission packet to init a file Transmission
1100101 101 ID_PACKET Transmision packet to send the session ID to Waspmote
1100110 102 DATA_PACKET Transmision packet to send data to Meshlium
(Binoary) 1100111 103 ACK_PACKET Transmision packet to sned ACK/NACK to Waspmote
1101000 104 END_PACKET Transmision packet to end the file transmision
105t0 119 | ... Reserved types
1111000 120 delete_firmware OTA packet to delete a firmware from boot.txt
1111001 121 check_new_program OTA packet to give starting information
1111010 122 new_firmware_received | OTA packet to start receiving a new firmware
1111011 123 new_firmware_packets OTA packet to receive firmware packets
1111100 124 new_firmware_end OTA packet to end a firmware transmission
1111101 125 upload_firmware OTA packet to run a new firmware to Waspmote
1111110 126 request_ID OTA packet to request the mote ID
1111111 127 request_bootlist OTA packet to request the boot.txt list
0000000 128 Example Regular frame for examples
0000001 129 TimeOut Frame sent when time is out
0000010 130 Event Frame sent when an event occurs
(AS1CII) 0000011 131 Alarm Frame sent when an alarm occurs
0000100 132 Servicel Frame for “keep alive” advertisement
0000101 133 Service2 Frame for “low battery” advertisement
134t0255 | ... Reserved types

Figure 8: Frame types

2.4. Sensor fields

The following table describes all possible sensor fields.
Reference: This column refers to the sensor reference given by Libelium to each sensor in the sensor catalog.
Sensor TAG: This column defines the constants needed to add each sensor to the frame using addSensor function.

SENSOR ID: Each sensor field has its own identifier. Depending on the Sensor TAG chosen, a different identifier will be set as
sensor identifier. ASCII frames use a string label as sensor identifier. Binary frames use a byte as sensor identifier so as to save
frame size.

Number of Fields: Defines the number of different fields a sensor value presents. Most of sensors only need a unique field.
But there are some cases which need more than one, i.e. the GPS module which needs 2 fields for both latitude and longitude
measurements.

-8- v4.1

Frame Structure

Type and Size: Indicates the variable type which has to be used for each sensor. The possibilities are: uint8_t (1 Byte), int (2
Bytes), float (4 Bytes), unsigned long (4 Bytes), string (variable size). ASCII frames don't have constraints when adding sensor
fields in order to facilitate the user to insert new sensor data.

Default Decimal Precision: Defines for each sensor the number of decimals used in ASCII frames when using float variable
types.

Units: This column defines the units used for each sensor.

9- v4.1

e

Frame Structure

SENSOR ID Binary ASCII
Sensor Sensor Number i .
sensor Reference | TAG | ginary | Asci | OfFields | Tyeeof | LR | SECE | Unies
ekl (Bytes) | Precision
Carbon Monoxide 9229 SENSOR_CO 0 co 1 float 4 3 voltage
Carbon Dioxide 9230 SENSOR_CO2 1 co2 1 float 4 3 voltage
Oxygen 9231 SENSOR_02 2 02 1 float 4 3 voltage
Methane 9232 SENSOR_CH4 3 CH4 1 float 4 3 voltage
Liquefied Petroleum Gases 9234 SENSOR_LPG 4 LPG 1 float 4 3 voltage
Ammonia 9233 SENSOR_NH3 5 NH3 1 float 4 3 voltage
Air Pollutants 1 9235 SENSOR_AP1 6 AP1 1 float 4 3 voltage
§ Air Pollutants 2 9236 SENSOR_AP2 7 AP2 1 float 4 3 voltage
8 Solvent Vapors 9237 SENSOR_SV 8 Y 1 float 4 3 voltage
Nitrogen Dioxide 9238 SENSOR_NO2 9 NO2 1 float 4 3 voltage
Ozone 9258 SENSOR_0O3 10 03 1 float 4 3 voltage
Hydrocarbons 9201 SENSOR_VOC 1 VOC 1 float 4 3 voltage
Temperature Celsius 9203 SENSOR_TCA 12 TCA 1 float 4 2 ©C
Temperature Fahrenheit 9203 SENSOR_TFA 13 TFA 1 float 4 2 oF
Humidity 9204 SENSOR_HUMA 14 HUMA 1 float 4 1 %RH
Pressure atmospheric 9250 SENSOR_PA 15 PA 1 float 4 2 Kilo Pascales
Pressure/Weight 9219 SENSOR_PW 16 PW 1 float 3 Ohms
Bend 9218 SENSOR_BEND 17 BEND 1 float 3 Ohms
Vibration 9221/9222 | SENSOR_VBR 18 VBR 1 uint8_t 1 0 Open/
Closed
Hall Effect 9207 | SENSOR_HALL 19 HALL 1 uint8_t 1 0 Open/
Closed
g Liquid Presence 9243 SENSOR_LP 20 LP 1 uints_t 1 0 8‘;22 O/|
- Liquid Level 92399222240/ SENSOR_LL 21 LL 1 uint8_t 1 0 8‘(’;2 (;
Luminosity 9205 SENSOR_LUM 22 LUM 1 float 4 3 Ohms
presence /
Presence 9212 SENSOR_PIR 23 PIR 1 uint8_t 1 0 Not
presence
Stretch 9217 SENSOR_ST 24 ST 1 float 4 3 Ohms
Microphone 9259 SENSOR_MCP 25 MCP 1 uint8_t 1 0 dBA
3 Crack detection gauge 9321 SENSOR_CDG 26 CDG 1 uint8_t 1 0 true/false
E Crack propagation gauge 9322 SENSOR_CPG 27 CPG 1 float 4 3 Ohms
E Linear Displacement 9319 SENSOR_LD 28 LD 1 float 4 3 mm
cﬁ Dust 9320 SENSOR_DUST 29 DUST 1 float 4 3 mg/m?
Ultrasound 9246 /9213 | SENSOR_US 30 us 1 float 4 2 m
g‘ Magnetic Field N/A SENSOR_MF 31 MF 3 int 2 0 LSBs
f’; . . "Occupied
a. | Parking Spot Status N/A SENSOR_PS 32 PS 1 uint8_t 1 0 / Empty”
Temperature °C (Sensirion) 9247 SENSOR_TCB 33 TCB 1 float 4 2 oC
([Temperature °F (Sensirion) 9247 SENSOR_TFB 34 TFB 1 float 4 2 oF
‘_E Humidity (Sensirion) 9247 SENSOR_HUMB 35 HUMB 1 float 4 1 %RH
E Soil Temperature 9255 SENSOR_SOILT 36 SOILT 1 float 4 2 oC
‘? Soil Moisture 9248 SENSOR_SOIL 37 SOIL 1 float 4 2 Frequency
Leaf Wetness 9249 SENSOR_LW 38 LW 1 uint8_t 1 0 %
-10- v4.1

SUJE!SP n
Mmoitle Frame Structure

SENSOR ID Binary ASCII
Snsor | puferanca | TG | minary | Ascr | OfFielas | Trpect | SEES| DEE | unk
Eariabie (Bytes) | Precision
Solar Radiation 9251 SENSOR_PAR 39 PAR 1 float 4 2 pmol*m-2*s!
Ultraviolet Radiation 9257 SENSOR_UV 40 uv 1 float 4 2 pmol*m-2*s
[Trunk Diameter 9252 SENSOR_TD 41 D 1 float 4 3 mm
"_3 Stem Diameter 9253 SENSOR_SD 42 SD 1 float 4 3 mm
:_-' Fruit Diameter 9254 SENSOR_FD 43 FD 1 float 4 3 mm
‘? Anemometer 9256 SENSOR_ANE 44 ANE 1 float 4 2 km/h
Wind Vane 9256 SENSOR_WV 45 Wv 1 uint8_t 1 N/A Direction
Pluviometer 9256 SENSOR_PLV 46 PLV 1 float 4 2 mm/min
s
E Geiger tube N/A SENSOR_RAD 47 RAD 1 float 4 60r0 “Sc"g 21‘”
&
g\ Current 9266 SENSOR_CU 48 (@V] 1 float 4 2 A
E Water flow 92969299597 / SENSOR_WF 49 WF 1 float 4 3 I/min
§ Load cell 92609232261 4 SENSOR_LC 50 LC 1 float 4 3 voltaje
"’E’ Distance Foil 9267 /9268 | SENSOR_DF 51 DF 1 float 4 3 Ohms
Battery N/A SENSOR_BAT 52 BAT 1 uint8_t 1 0 %
Global Positioning System WGPS SENSOR_GPS 53 GPS 2 float 4 6 degrees
RSSI N/A SENSOR_RSSI 54 RSSI 1 int 2 0 N/A
MAC Address N/A SENSOR_MAC 55 MAC 1 string variable N/A N/A
Network Address (XBee) N/A SENSOR_NA 56 NA 1 string variable N/A N/A
= Network ID origin (XBee) N/A SENSOR_NID 57 NID 1 string variable N/A N/A
§ Date N/A SENSOR_DATE 58 DATE 3 uint8_t 1 N/A N/A
';E' Time N/A SENSOR_TIME 59 TIME 3or4 uint8_t 1 N/A N/A
GMT N/A SENSOR_GMT 60 GMT 1 int 1 N/A N/A
Free_RAM N/A SENSOR_RAM 61 RAM 1 int 2 0 bytes
Internal_temperature N/A iE’:‘ASPOR—IN— 62 TIE'\II\XP 1 float 4 2 °oC
Accelerometer N/A SENSOR_ACC 63 ACC 3 int 2 0 mg
Millis N/A SENSOR_MILLIS 64 MILLIS 1 ulong 4 0 ms
I
é String N/A SENSOR_STR 65 STR 1 string variable N/A N/A
7]
:E, Meshlium BT Scanner N/A SENSOR_MBT 66 MBT 1 string variable N/A N/A
5
% Meshlium WiFi Scanner N/A SENSOR_MWIFI 67 MWIFI 1 string variable N/A N/A
O | Unique Identifier N/A SENSOR_UID 68 uiD 1 string variable N/A N/A
E RFID block N/A SENSOR_RB 69 RB 1 string variable N/A N/A

Figure 9: Field types

-11- v4.1

Usage

3. Usage

The following sections show how to create frames and add sensor fields.

3.1. Setting the Waspmote Identifier

There is a function which allows the user to store the Waspmote ID in the EEPROM memory. This function is named setID.The
Waspmote ID will be used to set the corresponding field in the frame’s header when calling createFrame function.

Example of use:
{
// store Waspmote ID in EEPROM memory (16-Byte max)
frame.setID(“Waspmote Pro”);

}

3.2. Creating new Frames

The function in charge of creating a new frame is: createF rame. This function selects the frame mode:

ASCII
+ BINARY

Besides, it is possible to define the Waspmote ID which will be included in the frame’s header (16 bytes maximum) instead of
using the mote identifier stored in the EEPROM memory.

The function prototypes are the following:
Create an ASCIl frame. The Waspmote ID is get from the EEPROM memory that setID function has previously set:
{
}

frame.createFrame();

Create an ASCIl frame. The Waspmote ID (i.e.“Waspmote_Pro”) is set as an input parameter:
{
}

frame.createFrame(ASCII, "Waspmote Pro”);

« Create a Binary frame. The Waspmote ID (i.e.“Waspmote_Pro”) is set as an input parameter:
{
}

frame.createFrame (BINARY, "Waspmote Pro”);

3.3. Setting the Frame Size

The class constructor initializes the attribute _maxSize, used to limit the maximum frame size, to MAX_FRAME constant. This
constant defines a maximum default size of 150 bytes per frame. As this is the maximum possible value, it can be modified in
WaspFrameConstants.h in order to create frames with larger sizes.

On the other hand, setFrameSize is the function which permits to set the frame size according to the user’s consideration.
Besides, it is possible to set the frame size depending on the XBee module, link encryption mode and AES encryption use.
The following table defines the maximum frame size to be used for each communication protocol and several encryption
possibilities:

-12- v4.1

moTte
Usage
Maximum frame size
Module - -
No AES encryption AES encryption
@16bit Unicast 98 Bytes 93 Bytes
Link Encrypted 64bit Unicast 94 Bytes 77 Bytes
XBee - 802.15.4 P © Y Y
Broadcast 95 Bytes 77 Bytes
Link Unencrypted 100 Bytes 93 Bytes
XBee - 868 100 Bytes 93 Bytes
Link Encrypted 80 Bytes 77 Bytes
XBee - 900 - yP Y Y
Link Unencrypted 100 Bytes 93 Bytes
XBee - Digimesh 73 Bytes 61 Bytes
) @64bit Unicast 66 Bytes 61 Bytes
Link Encrypted
) Broadcast 84 Bytes 77 Bytes
XBee - ZigBee . -
. @64bit Unicast 74 Bytes 61 Bytes
Link Unencrypted
Broadcast 92 Bytes 77 Bytes
Bluetooth - transparent connection Limited by MAX_FRAME | Limited by MAX_FRAME
GPRS Limited by MAX_FRAME | Limited by MAX_FRAME
3G Limited by MAX_FRAME | Limited by MAX_FRAME
WiFi Limited by MAX_FRAME | Limited by MAX_FRAME

Figure 10: Maximum frame size per protocol

Note: MAX_FRAME is 100 bytes but can be changed by te user.

The function prototypes are:
Set frame size via parameter given by the user:
void setFrameSize(uint8 t size);

Where “size” must be less than MAX_FRAME, if not MAX_FRAME will be set as frame maximum size
Set frame size depending on the protocol, addressing and encryption used:

void setFrameSize(uint8 t protocol,
uint8 t addressing,
uint8 t linkEncryption,
uint8 t AESEncryption);

Where “protocol” specifies the XBee module protocol between:

XBEE_802_15_4
ZIGBEE
DIGIMESH
XBEE_900
XBEE_868

“addressing” specifies the addressing mode between:

UNICAST_16B: for Unicast 16-bit addressing (only for XBee-802.15.4)
UNICAST_64B: for Unicast 64-bit addressing
BROADCAST_MODE: for Broadcast addressing

-13-

v4.1

Usage

“linkEncryption” specifies the XBee encryption mode between:

ENABLED =1
DISABLED =0
“AESEncryption” specifies if AES encryption is used or not:

ENABLED =1
DISABLED =0

Set frame size depending on the protocol and encryption used (default UNICAST_64B addressing):

void setFrameSize(uint8 t protocol,
uint8 t linkEncryption,
uint8 t AESEncryption);

Examples of use:

{
// set frame size to 125 Bytes

frame.setFrameSize(125);

// XBee-802, unicast 16-b addressing, XBee encryption Disabled, AES encryption Disabled
frame.setFrameSize(XBEE 802 15 4, UNICAST 16B, DISABLED, DISABLED);

// XBee-868, unicast 64-b addressing, XBee encryption Enabled, AES encryption Enabled
frame.setFrameSize(XBEE 868, ENABLED, ENABLED);

// XBee-ZigBee, Broadcast addressing, XBee encryption Enabled, AES encryption Disabled
frame.setFrameSize(ZIGBEE, BROADCAST, ENABLED, DISABLED);

// XBee-900, unicast 64-b addressing, XBee encryption Disabled, AES encryption Enabled
frame.setFrameSize (XBEE 900, DISABLED, ENABLED);

// XBee-Digimesh, Broadcast addressing, XBee encryption Enabled, AES encryption Enabled
frame.setFrameSize(DIGIMESH, BROADCAST, ENABLED, ENABLED);

}

Example:
« How to set the frame size depending on the protocol and encryption used:

http://www.libelium.com/development/waspmote/examples/frame-05-set-frame-size

3.4. Setting the Frame Type

Thereis a function which allows the user to set the required frame type. This function must be called after calling createFrame
function. In the case it is not called, a default "EXAMPLE_FRAME" type is chosen by createF rame. The function that permits
the setting of the frame type is setFrameType.Itis possible to select between different constants predefined in WaspFrame.h
in order to set the sort of packet to be sent:

EXAMPLE_FRAME
TIMEOUT_FRAME
EVENT_FRAME
ALARM_FRAME
SERVICE1_FRAME
SERVICE2_FRAME

-14- v4.1

http://www.libelium.com/development/waspmote/examples/frame-05-set-frame-size

Usage

These constants permit to set the Frame Type in spite of the frame mode (ascii or binary).

Example of use:

{
frame.setFrameType(TIMEOUT FRAME); // set a TIMEOUT frame type

}
Example:
« How to set the frame type:

http://www.libelium.com/development/waspmote/examples/frame-06-set-frame-type

3.5. Adding Sensor Fields

This is the function which appends new sensor fields to the frame. The first parameter is the sensor tag to identify the sensor to
be added. The sensor identifier is followed up by the sensor values which might be presented in various types: int, float, strings,
etc. This function is defined by several prototypes so as to permit so many input possibilities.

Depending on the sensor field a specific type is needed for Binary frames. If a mismatch occurs, a message will appear through
USB port. The sensor table shows the needed data type for each sensor.

Each call to this function appends a new field if there is enough space for the new field. If not, the field will not be attached.

Example of use:
{
// set frame fields (String - char¥*)
frame.addSensor (SENSOR STR, (char*) “STRING");

// set frame fields (Battery sensor - uint8 t)
frame.addSensor (SENSOR BAT, (uint8 t) PWR.getBatterylLevel());

// set frame fields (Temperature in Celsius sensor - float)
frame.addSensor (SENSOR IN TEMP, (float) RTC.getTemperature());

The last example would create a frame payload with the following structure (depending on the frame mode):

ASCII frame. Payload length: 32Bytes

Payload

s|rfrf:[s[rrfv[n]alefoafr]:Jelz]efv|n] |r]elmlp|:]2]7].[2]s5]¢

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 11: ASCIl frame payload example

Binary frame. Payload length: 15Bytes

Payload
SENSOR_STR Length “STRING” | SENSOR_BAT 0x57 SENSOR_IN_TEMP 0x00 0x00 OxDA 0x41
0 1 2-7 8 9 10 11 12 13 14

Figure 12: Binary frame payload example

-15- v4.1

http://www.libelium.com/development/waspmote/examples/frame-06-set-frame-type

wasP

moTte
Usage

Examples:

- Create ASCIl frames with simple sensor data (1 field per sensor):

http://www.libelium.com/development/waspmote/examples/frame-01-ascii-simple

« Create ASCII frames with complex sensor data (more than 1 field per sensor):

http://www.libelium.com/development/waspmote/examples/frame-02-ascii-multiple

- Create BINARY frames with simple sensor data (1 field per sensor):

http://www.libelium.com/development/waspmote/examples/frame-03-binary-simple

- Create BINARY frames with complex sensor data (more than 1 field per sensor):

http://www.libelium.com/development/waspmote/examples/frame-04-binary-multiple

prog_char str_CO[] PROGMEM ="CO”; //0
prog_char str_CO2[] PROGMEM ="C0O2" /1
prog_char str_O2[] PROGMEM ="02"; /]2
prog_char str_CHA4][] PROGMEM ="“CH4"; //3
prog_char str_NEW[] PROGMEM ="NEW_LABEL"; /]?

”

c) Fill the Flash Memory tables respecting the defined index in section “a”. The Flash Memory tables are:

SENSOR_TABLE: This is a string table in order to define the sensor labels. For ASCII frames.

SENSOR_TYPE_TABLE: This is a uint8_t table which specifies the type of sensor depending on the type of value the user
must put as input. Only for Binary frames.

SENSOR_FIELD_TABLE: This is a uint8_t table which specifies the number of fields for each sensor.

DECIMAL_TABLE: This is a uint8_t table which specifies the number of decimals a float must be set when adding each sensor
to an ASClI frame.

3.7.Showing the actual Frame

There is a function called showF rame which prints the frame structure at the moment this function is called.

Example of use:

frame.showFrame();

}

-16- v4.1

http://www.libelium.com/development/waspmote/examples/frame-01-ascii-simple
dviid

http://www.libelium.com/development/waspmote/examples/frame-02-ascii-multiple
http://www.libelium.com/development/waspmote/examples/frame-03-binary-simple
http://www.libelium.com/development/waspmote/examples/frame-04-binary-multiple

Code examples

4. Code examples

In the Waspmote Development section you can find complete examples:

http://www.libelium.com/development/waspmote/examples

-17- v4.1

http://www.libelium.com/development/waspmote/examples

Documentation changelog

5. Documentation changelog

« Added references to 3G/GPRS Board in section: Expansion Radio Board
« Added 3G/GPRS in table maximum frame size per protocol
« Added changes respect to maximum frame size for GPRS, 3G y BT in table maximum frame size per protocol
« Added changes respect to Serial ID in ASCIl and Binary
Added changes in tables binary Frame structure and binary Frame example

-18- v4.1

