/*
Music.h - Music library
Copyright (c) 2012 Copenhagen Institute of Interaction Design.
All right reserved.
This library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser Public License for more details.
You should have received a copy of the GNU Lesser Public License
along with Foobar. If not, see .
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ author: Jakob Bak
+ contact: j.bak@ciid.dk
*/
#ifndef Music_h // include guard
#define Music_h
//#include // see if needed
#include "Arduino.h"
#include
#include
#include
#include "Wavetable.h"
// current sample rate is 15625 as defined in the init() section
#define SAMPLE_RATE 15625
// Defining which pins the SPI interface is connected to.
#define SPI_SCK 5
#define SPI_MOSI 3
// Checking if NUM_OSCILLATORS is set, and if not, default to 1 oscillator
#ifndef NUM_OSCILLATORS
#define NUM_OSCILLATORS 1
#elif (NUM_OSCILLATORS == 1)||(NUM_OSCILLATORS == 2)||(NUM_OSCILLATORS == 3)
#else
#error NUM_OSCILLATORS shall be 1, 2 or 3
#endif
// Checking if BIT_DEPTH is set, and if not, default to 8bit
#ifndef BIT_DEPTH
#define BIT_DEPTH 8
#elif (BIT_DEPTH == 8)||(BIT_DEPTH == 12)
#else
#error BIT_DEPTH shall be 8 or 12
#endif
// Shortnames for waveforms
#define SINE 0
#define SQUARE 1
#define PULSE 2
#define TRIANGLE 3
#define SAW 4
#define FUZZ 5
#define DIGI1 6
#define DIGI2 7
#define DIGI3 8
#define DIGI4 9
#define NOISE 10
#define DIGI6 11
#define TAN1 12
#define TAN2 13
#define TAN3 14
#define TAN4 15
// Maximum possible value for amplification envelope in audio code
#define MAX_ENV_GAIN 65535
// MIDI specific constants
#ifndef MIDI_CHANNEL
#define MIDI_CHANNEL 1
#elif (MIDI_CHANNEL > 0)&&(MIDI_CHANNEL < 17)
#else
#error MIDI_CHANNEL should be between 1 - 16
#endif
//synth parameters as MIDI controller numbers
#define DETUNE 4
#define WAVEFORM 5
#define PORTAMENTO 6 // not implemented yet
#define FREQUENCY1 10
#define SEMITONE1 11
#define DETUNE1 12
#define GAIN1 13
#define WAVEFORM1 14
#define FM1 15
#define FREQUENCY2 20
#define SEMITONE2 21
#define DETUNE2 22
#define GAIN2 23
#define WAVEFORM2 24
#define FM2 25
#define FREQUENCY3 30
#define SEMITONE3 31
#define DETUNE3 32
#define GAIN3 33
#define WAVEFORM3 34
#define FM3 35
#define ENV_ATTACK 114
#define ENV_DECAY 115
#define ENV_SUSTAIN 116
#define ENV_RELEASE 117
// Table of MIDI note values to frequency in Hertz
prog_uint16_t hertzTable[] PROGMEM = {8,8,9,9,10,10,11,12,12,13,14,15,16,17,18,19,20,21,23,24,25,27,29,30,32,34,36,38,41,43,46,48,51,54,58,61,65,69,73,77,82,87,92,97,103,109,116,123,130,138,146,155,164,174,184,195,207,219,233,246,261,277,293,311,329,349,369,391,415,440,466,493,523,554,587,622,659,698,739,783,830,880,932,987,1046,1108,1174,1244,1318,1396,1479,1567,1661,1760,1864,1975,2093,2217,2349,2489,2637,2793,2959,3135,3322,3520,3729,3951,4186,4434,4698,4978,5274,5587,5919,6271,6644,7040,7458,7902,8372,8869,9397,9956,10548,11175,11839,12543};
// Used in the functions that set the envelope timing
prog_uint32_t envTimeTable[] PROGMEM = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,73,75,77,79,81,83,85,87,89,92,95,98,101,104,108,112,116,120,124,128,132,136,140,145,150,155,160,165,170,176,182,188,194,201,208,215,222,230,238,247,257,268,280,293,307,322,341,379,425,482,556,654,792,998,1342,2030,4095};
float semitoneTable[] = {0.25,0.2648658,0.2806155,0.29730177,0.31498027,0.33370996,0.35355338,0.37457678,0.39685026,0.4204482,0.44544938,0.47193715,0.5,0.5297315,0.561231,0.59460354,0.62996054,0.6674199,0.70710677,0.74915355,0.7937005,0.8408964,0.8908987,0.9438743,1.0,1.0594631,1.122462,1.1892071,1.2599211,1.3348398,1.4142135,1.4983071,1.587401,1.6817929,1.7817974,1.8877486,2.0,2.1189263,2.244924,2.3784142,2.5198421,2.6696796,2.828427,2.9966142,3.174802,3.3635857,3.563595,3.7754972,4.0};
// MMusic class for handling sound engine
class MMusic {
public:
// INITIALIZER
void init();
// AUDIO INTERRUPT SERVICE ROUTINE
void synthInterrupt8bit();
void synthInterrupt8bitFM();
void synthInterrupt12bitSine();
void synthInterrupt12bitSineFM();
// FREQUENCY AND DETUNE FUNCTIONS
void setFrequency(float frequency);
void setFrequency1(float frequency1);
void setFrequency2(float frequency2);
void setFrequency3(float frequency3);
void setSemitone1(int8_t semi);
void setSemitone2(int8_t semi);
void setSemitone3(int8_t semi);
void setDetune(float detune);
void setDetune1(float detune);
void setDetune2(float detune);
void setDetune3(float detune);
void setFM1(uint8_t fm);
void setFM2(uint8_t fm);
void setFM3(uint8_t fm);
void pitchBend(float b); // NOT IMPLEMENTED
// WAVEFORM FUNCTIONS
void setWaveform(uint16_t waveForm); // JUST FOR 8bit WAVEFORMS
void setWaveform1(uint16_t waveForm); //
void setWaveform2(uint16_t waveForm); //
void setWaveform3(uint16_t waveForm); //
// GAIN FUNCTIONS
void setGain(float value); // 0.0 - 1.0
void setGain1(float value); // 0.0 - 1.0
void setGain2(float value); // 0.0 - 1.0
void setGain3(float value); // 0.0 - 1.0
float getGain(); // 0.0 - 1.0
float getGain1(); // 0.0 - 1.0
float getGain2(); // 0.0 - 1.0
float getGain3(); // 0.0 - 1.0
// NOTE FUNCTIONS
void noteOn(uint8_t note, uint8_t vel); // 0 - 127
void noteOn(uint8_t note); // 0 - 127
void noteOff(uint8_t note); // 0 - 127
void noteOff();
uint16_t getNoteFrequency(uint8_t note); // 0 - 127
// ENVELOPE FUNCTIONS
void enableEnvelope();
void disableEnvelope();
void setEnvStage(uint8_t stage); // 0 - 4
void setAttack(uint8_t att); // 0 - 127
void setDecay(uint8_t dec); // 0 - 127
void setSustain(uint8_t sus); // 0 - 127
void setRelease(uint8_t rel); // 0 - 127
void setVelSustain(uint8_t vel); // 0 - 127
void setVelPeak(uint8_t vel); // 0 - 127
private:
// WAVEFORM VARIABLES
uint16_t waveForm1;
uint16_t waveForm2;
uint16_t waveForm3;
uint16_t waveForm;
bool sine;
bool saw;
bool square;
// FREQUENCY VARIABLES
uint16_t period1;
uint16_t period2;
uint16_t period3;
uint16_t frequency16bit;
float frequency;
float frequency1;
float frequency2;
float frequency3;
float semi1;
float semi2;
float semi3;
float detune1;
float detune2;
float detune3;
float bend;
// OSCILLATOR VARIABLES
uint16_t accumulator1;
uint16_t accumulator2;
uint16_t accumulator3;
uint16_t index1;
uint16_t index2;
uint16_t index3;
uint32_t oscil1;
uint32_t oscil2;
uint32_t oscil3;
int32_t modulator1; // NOT USED
int32_t modulator2;
int32_t modulator3; // NOT USED
int8_t fmAmount1; // NOT USED
int8_t fmAmount2;
int8_t fmAmount3; // NOT USED
uint16_t gain;
uint16_t gain1;
uint16_t gain2;
uint16_t gain3;
// ENVELOPE VARIABLES
bool envelopeOn;
uint32_t env;
uint8_t envStage;
uint16_t attack;
uint16_t decay;
uint16_t sustain;
uint16_t release;
uint16_t velSustain;
uint16_t velPeak;
// NOTE VARIABLE
uint8_t notePlayed;
// final sample that goes to the DAC
uint32_t sample;
// the two bytes that go to the DAC over SPI
uint8_t dacSPI0;
uint8_t dacSPI1;
};
extern MMusic Music;
#ifdef MIDI
// MMidi class for handling MIDI implementation
class MMidi {
public:
void init();
void checkMidi();
void midiHandler();
void noteOff(uint8_t channel, uint8_t note, uint8_t vel);
void noteOn(uint8_t channel, uint8_t note, uint8_t vel);
void aftertouch(uint8_t channel, uint8_t note, uint8_t pressure);
void controller(uint8_t channel, uint8_t number, uint8_t value);
void programChange(uint8_t channel, uint8_t number);
void channelPressure(uint8_t channel, uint8_t pressure);
void pitchWheel(uint8_t channel, uint8_t highBits, uint8_t lowBits);
private:
// MIDI
uint8_t data;
uint8_t midiBuffer[3];
uint8_t midiChannel;
int midiBufferIndex;
uint16_t frequency;
uint8_t notePlayed;
};
extern MMidi Midi;
#endif
//////////////////////////////////////////////////////////
//
// AUDIO INTERRUPT - The pre-processor selects 8 or 12 bit
//
//////////////////////////////////////////////////////////
ISR(TIMER2_COMPA_vect) { // timer 2 is audio interrupt timer
OCR2A = 127; // don't change this
#if BIT_DEPTH == 8
#ifdef FM
Music.synthInterrupt8bitFM();
#else
Music.synthInterrupt8bit();
#endif
#endif
#if BIT_DEPTH == 12
#ifdef FM
Music.synthInterrupt12bitSineFM();
#else
Music.synthInterrupt12bitSine();
#endif
#endif
}
/////////////////////////////////////////////////////////
//
// 8 BIT WAVETABLE - AUDIO INTERRUPT SERVICE ROUTINE
//
/////////////////////////////////////////////////////////
void inline MMusic::synthInterrupt8bit()
{
PORTD &= ~(1<<3);
// Frame sync low for SPI (making it low here so that we can measure lenght of interrupt with scope)
#ifdef CFO
PORTB &= ~(1<<2);
#else
PORTD &= ~(1<<6);
#endif
accumulator1 = accumulator1 + period1;
index1 = accumulator1 >> 8;
//oscil1 = 0;
memcpy_P(&oscil1, &waveTable[index1 + waveForm1],1);
sample = (oscil1 * gain1);
#if (NUM_OSCILLATORS==2) || (NUM_OSCILLATORS==3)
accumulator2 = accumulator2 + period2;
index2 = accumulator2 >> 8;
//oscil2 = 0;
memcpy_P(&oscil2, &waveTable[index2 + waveForm2],1);
sample += (oscil2 * gain2);
#endif
#if NUM_OSCILLATORS==3
accumulator3 = accumulator3 + period3;
index3 = accumulator3 >> 8;
//oscil3 = 0;
memcpy_P(&oscil3, &waveTable[index3 + waveForm3],1);
sample += (oscil3 * gain3);
#endif
sample >>= 10;
// AMPLIFICATION ENVELOPE
// Amplification envelope is calculated here
if(envelopeOn) {
// Attack
if(envStage == 1) {
env += attack;
if(velPeak < env) {
env = velPeak;
envStage = 2;
}
}
// Decay
else if(envStage == 2) {
env -= decay;
if(env < velSustain || MAX_ENV_GAIN < env) {
env = velSustain;
envStage = 3;
}
}
// Sustain
else if (envStage == 3) {
env = velSustain;
}
// Release
else if (envStage == 4) {
env -= release;
if(MAX_ENV_GAIN < env) {
env = 0;
envStage = 0;
}
}
/*
// No gain
else if (envStage == 0) {
env = 0;
//accumulator1 = 0;
//accumulator2 = 0;
//accumulator3 = 0;
}
*/
} else {
env = 65535;
}
// Adding the amplification envelope (16bit) we bring it back to the 16bit frame again afterwards.
sample = (env * sample) >> 16;
// Formatting the samples to be transfered to the MCP4921 DAC
dacSPI0 = sample >> 8;
dacSPI0 >>= 4;
dacSPI0 |= 0x30;
dacSPI1 = sample >> 4;
SPCR |= (1 << MSTR);
// transmit value out the SPI port
SPDR = dacSPI0;
while (!(SPSR & (1<> 8;
//oscil1 = 0;
memcpy_P(&oscil1, &waveTable[index1 + waveForm1],1);
//sample = (oscil1 * gain1);
//modulator2 = 0;
modulator2 = (fmAmount2 * (oscil1-128) * int32_t(period2))>>14;
//modulator2 = (period2 * (oscil1-128))>>7;
accumulator2 = accumulator2 + period2 + modulator2;
index2 = accumulator2 >> 8;
//oscil2 = 0;
memcpy_P(&oscil2, &waveTable[index2 + waveForm2],1);
sample = (oscil2 * gain2);
sample >>= 8;
// AMPLIFICATION ENVELOPE
// Amplification envelope is calculated here
if(envelopeOn) {
// Attack
if(envStage == 1) {
env += attack;
if(velPeak < env) {
env = velPeak;
envStage = 2;
}
}
// Decay
else if(envStage == 2) {
env -= decay;
if(env < velSustain || MAX_ENV_GAIN < env) {
env = velSustain;
envStage = 3;
}
}
// Sustain
else if (envStage == 3) {
env = velSustain;
}
// Release
else if (envStage == 4) {
env -= release;
if(MAX_ENV_GAIN < env) {
env = 0;
envStage = 0;
}
}
/*
// No gain
else if (envStage == 0) {
env = 0;
//accumulator1 = 0;
//accumulator2 = 0;
//accumulator3 = 0;
}
*/
} else {
env = 65535;
}
// Adding the amplification envelope (16bit) we bring it back to the 16bit frame again afterwards.
sample = (env * sample) >> 16;
// Formatting the samples to be transfered to the MCP4921 DAC
dacSPI0 = sample >> 8;
dacSPI0 >>= 4;
dacSPI0 |= 0x30;
dacSPI1 = sample >> 4;
SPCR |= (1 << MSTR);
// transmit value out the SPI port
SPDR = dacSPI0;
while (!(SPSR & (1<> 4;
memcpy_P(&oscil1, &sineTable[index1],2);
sample = (oscil1 * gain1) << 2;
#if (NUM_OSCILLATORS==2) || (NUM_OSCILLATORS==3)
accumulator2 = accumulator2 + period2;
index2 = accumulator2 >> 4;
memcpy_P(&oscil2, &sineTable[index2],2);
sample += (oscil2 * gain2) << 2;
#endif
#if NUM_OSCILLATORS==3
accumulator3 = accumulator3 + period3;
index3 = accumulator3 >> 4;
memcpy_P(&oscil3, &sineTable[index3],2);
sample += (oscil3 * gain3) << 2;
#endif
sample >>= 16;
// AMPLIFICATION ENVELOPE
// Amplification envelope is calculated here
if(envelopeOn) {
// Attack
if(envStage == 1) {
env += attack;
if(velPeak < env) {
env = velPeak;
envStage = 2;
}
}
// Decay
else if(envStage == 2) {
env -= decay;
if(env < velSustain || MAX_ENV_GAIN < env) {
env = velSustain;
envStage = 3;
}
}
// Sustain
else if (envStage == 3) {
env = velSustain;
}
// Release
else if (envStage == 4) {
env -= release;
if(MAX_ENV_GAIN < env) {
env = 0;
envStage = 0;
}
}
/*
// No gain
else if (envStage == 0) {
env = 0;
//accumulator1 = 0;
//accumulator2 = 0;
//accumulator3 = 0;
}
*/
} else {
env = 65535;
}
// Adding the amplification envelope (16bit) we bring it back to the 16bit frame again afterwards.
sample = (env * sample) >> 16;
// Formatting the samples to be transfered to the MCP4921 DAC
dacSPI0 = sample >> 8;
dacSPI0 >>= 4;
dacSPI0 |= 0x30;
dacSPI1 = sample >> 4;
SPCR |= (1 << MSTR);
// transmit value out the SPI port
SPDR = dacSPI0;
while (!(SPSR & (1<> 4;
memcpy_P(&oscil1, &sineTable[index1],2);
//sample = (oscil1 * gain1) << 2;
//modulator2 = 0;
modulator2 = (fmAmount2 * int32_t(oscil1-2048))>>2;
modulator2 = (modulator2 * int32_t(period2))>>16;
accumulator2 = accumulator2 + period2 + modulator2;
//accumulator2 = accumulator2 + period2;
index2 = accumulator2 >> 4;
memcpy_P(&oscil2, &sineTable[index2],2);
sample = (oscil2 * gain2);
sample >>= 12;
// AMPLIFICATION ENVELOPE
// Amplification envelope is calculated here
if(envelopeOn) {
// Attack
if(envStage == 1) {
env += attack;
if(velPeak < env) {
env = velPeak;
envStage = 2;
}
}
// Decay
else if(envStage == 2) {
env -= decay;
if(env < velSustain || MAX_ENV_GAIN < env) {
env = velSustain;
envStage = 3;
}
}
// Sustain
else if (envStage == 3) {
env = velSustain;
}
// Release
else if (envStage == 4) {
env -= release;
if(MAX_ENV_GAIN < env) {
env = 0;
envStage = 0;
}
}
/*
// No gain
else if (envStage == 0) {
env = 0;
//accumulator1 = 0;
//accumulator2 = 0;
//accumulator3 = 0;
}
*/
} else {
env = 65535;
}
// Adding the amplification envelope (16bit) we bring it back to the 16bit frame again afterwards.
sample = (env * sample) >> 16;
// Formatting the samples to be transfered to the MCP4921 DAC
dacSPI0 = sample >> 8;
dacSPI0 >>= 4;
dacSPI0 |= 0x30;
dacSPI1 = sample >> 4;
SPCR |= (1 << MSTR);
// transmit value out the SPI port
SPDR = dacSPI0;
while (!(SPSR & (1<127) att = 127;
memcpy_P(&attack, &envTimeTable[127 - att],2);
}
void MMusic::setDecay(uint8_t dec)
{
if(dec>127) dec = 127;
memcpy_P(&decay, &envTimeTable[127 - dec],2);
}
void MMusic::setSustain(uint8_t sus)
{
sustain = ((sus * MAX_ENV_GAIN)/128);
}
void MMusic::setRelease(uint8_t rel)
{
if(rel>127) rel = 127;
memcpy_P(&release, &envTimeTable[127 - rel],2);
}
void MMusic::setVelSustain(uint8_t vel)
{
velSustain = vel * (sustain / 128);
}
void MMusic::setVelPeak(uint8_t vel)
{
velPeak = vel * (MAX_ENV_GAIN / 128);
}
#ifdef MIDI
/////////////////////////////////////
//
// MIDI specific functions
//
/////////////////////////////////////
bool midiRead = false;
void MMidi::init()
{
Serial.begin(9600);
midiBufferIndex = 0;
midiChannel = MIDI_CHANNEL - 1;
if(midiChannel < 0 || midiChannel > 15) midiChannel = 0;
}
void MMidi::checkMidi()
{
while(Serial.available() > 0) {
data = Serial.read();
if(data & 0x80 && (data & 0x0F) == midiChannel) { // bitmask with 10000000 to see if byte is over 127 (data&0x80)
midiBufferIndex = 0; // and check if the midi channel corresponds to the midiChannel
midiRead = true; // the device is set to listen to.
} else if(data & 0x80) { // Else if the byte is over 127 (but not on the device's
midiRead = false; // midiChannel, don't read this or any following bytes.
}
if(midiRead) {
midiBuffer[midiBufferIndex] = data;
midiBufferIndex++;
if (midiBufferIndex > 2) {
midiHandler();
}
}
}
}
void MMidi::midiHandler() {
uint8_t midiChannel = (midiBuffer[0] & 0x0F);
switch(midiBuffer[0] & 0xF0) { // bit mask with &0xF0 ?
case 0x80:
noteOff (midiBuffer[0] & 0x0F, // midi channel 0-16
midiBuffer[1] & 0x7F, // note value 0-127
midiBuffer[2] & 0x7F); // note velocity 0-127
break;
case 0x90:
noteOn (midiBuffer[0] & 0x0F, // midi channel 0-16
midiBuffer[1] & 0x7F, // note value 0-127
midiBuffer[2] & 0x7F); // note velocity 0-127
break;
case 0xA0:
aftertouch (midiBuffer[0] & 0x0F, // midi channel 0-16
midiBuffer[1] & 0x7F, // note value 0-127
midiBuffer[2] & 0x7F);// note velocity 0-127
break;
case 0xB0:
controller (midiBuffer[0] & 0x0F, // midi channel 0-16
midiBuffer[1] & 0x7F, // controller number 0-127
midiBuffer[2] & 0x7F);// controller value 0-127
break;
case 0xC0:
programChange (midiBuffer[0] & 0x0F, // midi channel 0-16
midiBuffer[1] & 0x7F); // program number 0-127
break;
case 0xD0:
channelPressure (midiBuffer[0] & 0x0F, // midi channel 0-16
midiBuffer[1] & 0x7F); // pressure amount 0-127
break;
case 0xE0:
pitchWheel (midiBuffer[0] & 0x0F, // midi channel 0-16
midiBuffer[1] & 0x7F, // higher bits 0-6
midiBuffer[2] & 0x7F);// lower bits 7-13
break;
default:
break;
}
}
void MMidi::noteOff(uint8_t channel, uint8_t note, uint8_t vel) {
if(notePlayed == note) {
Music.setEnvStage(4);
}
}
void MMidi::noteOn(uint8_t channel, uint8_t note, uint8_t vel) {
Music.setEnvStage(1);
Music.setVelSustain(vel);
Music.setVelPeak(vel);
notePlayed = note;
memcpy_P(&frequency, &hertzTable[notePlayed],2);
Music.setFrequency1(frequency);
Music.setFrequency2(frequency);
Music.setFrequency3(frequency);
}
void MMidi::aftertouch(uint8_t channel, uint8_t note, uint8_t pressure) {
// Write code here for Aftertouch
}
void MMidi::controller(uint8_t channel, uint8_t number, uint8_t value) {
/* Serial.println();
Serial.print(channel);
Serial.print('-');
Serial.print(number);
Serial.print('-');
Serial.println(value);
*/
switch(number) {
case DETUNE:
Music.setDetune(value/5120.0);
break;
case PORTAMENTO:
//Music.setPortamento(value); // function to be defined, also argument
break;
case FREQUENCY1:
Music.setFrequency1(Music.getNoteFrequency(value));
break;
case FREQUENCY2:
Music.setFrequency2(Music.getNoteFrequency(value));
break;
case FREQUENCY3:
Music.setFrequency3(Music.getNoteFrequency(value));
break;
case DETUNE1:
Music.setDetune1(map(value,0,127,-100,100)*0.0005946);
break;
case DETUNE2:
Music.setDetune2(map(value,0,127,-100,100)*0.0005946);
//Music.setDetune2((value-64.0)*0.0005946);
//Music.setDetune2(value/5120.0);
break;
case DETUNE3:
Music.setDetune3(map(value,0,127,-100,100)*0.0005946);
//Music.setDetune3((value-64.0)*0.0005946);
//Music.setDetune3(value/5120.0);
break;
case SEMITONE1:
if(15 < value && value < 113) {
int8_t val = (((value-16)/2)-24);
Music.setSemitone1(val);
} else if (value < 16) {
Music.setSemitone1(-24);
} else {
Music.setSemitone1(24);
}
break;
case SEMITONE2:
if(15 < value && value < 113) {
int8_t val = (((value-16)/2)-24);
Music.setSemitone2(val);
} else if (value < 16) {
Music.setSemitone2(-24);
} else {
Music.setSemitone2(24);
}
break;
case SEMITONE3:
if(15 < value && value < 113) {
int8_t val = (((value-16)/2)-24);
Music.setSemitone3(val);
} else if (value < 16) {
Music.setSemitone3(-24);
} else {
Music.setSemitone3(24);
}
break;
case GAIN1:
Music.setGain1(value / 127.0);
break;
case GAIN2:
Music.setGain2(value / 127.0);
break;
case GAIN3:
Music.setGain3(value / 127.0);
break;
case WAVEFORM:
Music.setWaveform(value / 8);
break;
case WAVEFORM1:
Music.setWaveform1(value / 8);
break;
case WAVEFORM2:
Music.setWaveform2(value / 8);
break;
case WAVEFORM3:
Music.setWaveform3(value / 8);
break;
case FM2:
Music.setFM2(value);
break;
case ENV_ATTACK:
Music.setAttack(value);
break;
case ENV_DECAY:
Music.setDecay(value);
break;
case ENV_SUSTAIN:
Music.setSustain(value);
break;
case ENV_RELEASE:
Music.setRelease(value);
break;
default:
break;
}
}
void MMidi::programChange(uint8_t channel, uint8_t number) {
// Write code here for Program Change
}
void MMidi::channelPressure(uint8_t channel, uint8_t pressure) {
// Write code here for Channel Pressure
}
void MMidi::pitchWheel(uint8_t channel, uint8_t highBits, uint8_t lowBits) {
// Write code here for Pitch Wheel
}
#endif
#endif // close guard Music_h