57 lines
2.2 KiB
Python
57 lines
2.2 KiB
Python
|
|
import argparse, os, sys
|
||
|
|
from aitextgen.TokenDataset import TokenDataset
|
||
|
|
from aitextgen.utils import GPT2ConfigCPU
|
||
|
|
from aitextgen.utils import build_gpt2_config
|
||
|
|
from aitextgen import aitextgen
|
||
|
|
|
||
|
|
|
||
|
|
# https://github.com/minimaxir/aitextgen/blob/master/aitextgen/utils.py
|
||
|
|
# https://github.com/huggingface/transformers/blob/master/src/transformers/models/gpt2/configuration_gpt2.py
|
||
|
|
|
||
|
|
def run_cpu(te: str, tok: str, dat: str, blocksize: int, num_steps: int = 10000) -> int:
|
||
|
|
|
||
|
|
config = GPT2ConfigCPU()
|
||
|
|
|
||
|
|
ai = aitextgen(tokenizer_file=tok, config=config)
|
||
|
|
data = TokenDataset(dat, tokenizer_file=tok, block_size=blocksize, from_cache=True)
|
||
|
|
|
||
|
|
ai.train(data, output_dir=te, batch_size=16, num_steps=num_steps, generate_every=1000, save_every=1000, num_workers=4)
|
||
|
|
|
||
|
|
return 0
|
||
|
|
|
||
|
|
def run_gpu(te: str, tok: str, dat: str, blocksize: int, num_steps: int = 10000) -> int:
|
||
|
|
|
||
|
|
#NOTE: vocab_size is fixed since this is not yet in train_tokenizer
|
||
|
|
|
||
|
|
config = build_gpt2_config(vocab_size=1000, max_lenght=blocksize)
|
||
|
|
|
||
|
|
ai = aitextgen(tokenizer_file=tok, config=config)
|
||
|
|
data = TokenDataset(dat, tokenizer_file=tok, block_size=blocksize, from_cache=True)
|
||
|
|
|
||
|
|
ai.train(data, output_dir=te, batch_size=16, num_steps=num_steps, generate_every=1000, save_every=1000, num_workers=4, to_gpu=True)
|
||
|
|
|
||
|
|
return 0
|
||
|
|
|
||
|
|
|
||
|
|
def main() -> int:
|
||
|
|
p = argparse.ArgumentParser()
|
||
|
|
p.add_argument("text", type=str, help="text to create model from")
|
||
|
|
p.add_argument("-b", "--blocksize", type=int, choices=[32, 64, 128, 256, 1024], default=64, help="block size, default=64 (corresponds to GPT-2 'max_lenght' config)")
|
||
|
|
p.add_argument("-s", "--numsteps", type=int, default=10000)
|
||
|
|
p.add_argument("--tokensdir", type=str, default="data/tokens/")
|
||
|
|
p.add_argument("--ouputdir", type=str, default="data/models/")
|
||
|
|
p.add_argument("--gpu", action="store_true")
|
||
|
|
|
||
|
|
args = p.parse_args()
|
||
|
|
|
||
|
|
tok_file = f"{args.tokensdir}{args.text}.tokenizer.json"
|
||
|
|
dat_file = f"{args.tokensdir}{args.text}_bs={args.blocksize}.tar.gz"
|
||
|
|
output_dir = f"{args.ouputdir}{args.text}_bs={args.blocksize}_ns={args.numsteps}"
|
||
|
|
|
||
|
|
if args.gpu:
|
||
|
|
return run_gpu(te=output_dir, tok=tok_file, dat=dat_file, blocksize=args.blocksize, num_steps=args.numsteps)
|
||
|
|
else:
|
||
|
|
return run_cpu(output_dir, tok_file, dat_file, args.blocksize)
|
||
|
|
|
||
|
|
if __name__ == '__main__':
|
||
|
|
sys.exit(main())
|