examine + new speak
This commit is contained in:
parent
abf2f2f720
commit
11201664b8
29
config.json
Normal file
29
config.json
Normal file
@ -0,0 +1,29 @@
|
||||
{
|
||||
"voices": [
|
||||
{
|
||||
"name": "Ralph",
|
||||
"model_dir": "data/tokens+models/Emerson-Nature.txt_bs=64_ns=8000_vs=5000",
|
||||
"tokeniser_file": "data/tokens+models/Emerson-Nature.txt_bs=64_ns=8000_vs=5000/Emerson-Nature.txt_ns=5000.tokenizer.json",
|
||||
"temperature": "0.9"
|
||||
},
|
||||
{
|
||||
"name": "Jean",
|
||||
"model_dir": "data/tokens+models/Lafontaine-Fables[english].txt_bs=64_ns=8000_vs=5000",
|
||||
"tokeniser_file": "data/tokens+models/Lafontaine-Fables[english].txt_bs=64_ns=8000_vs=5000/Lafontaine-Fables[english].txt_ns=5000.tokenizer.json",
|
||||
"temperature": "1.2"
|
||||
},
|
||||
{
|
||||
"name": "Blake",
|
||||
"model_dir": "data/tokens+models/Blake-Songs-of-Innocence-and-of-Experience.txt_bs=64_ns=8000_vs=5000",
|
||||
"tokeniser_file": "data/tokens+models/Blake-Songs-of-Innocence-and-of-Experience.txt_bs=64_ns=8000_vs=5000/Blake-Songs-of-Innocence-and-of-Experience.txt_ns=5000.tokenizer.json",
|
||||
"temperature": "1.5"
|
||||
},
|
||||
{
|
||||
"name": "Friedrich",
|
||||
"model_dir": "data/tokens+models/Schelling-ON-THE-RELATION-OF-THE-PLASTIC-ARTS-TO-NATURE.txt_bs=64_ns=8000_vs=5000",
|
||||
"tokeniser_file": "data/tokens+models/Schelling-ON-THE-RELATION-OF-THE-PLASTIC-ARTS-TO-NATURE.txt_bs=64_ns=8000_vs=5000/Schelling-ON-THE-RELATION-OF-THE-PLASTIC-ARTS-TO-NATURE.txt_ns=5000.tokenizer.json",
|
||||
"temperature": "1.5"
|
||||
}
|
||||
|
||||
]
|
||||
}
|
||||
0
examine/__init__.py
Normal file
0
examine/__init__.py
Normal file
42
examine/doc2vec.py
Normal file
42
examine/doc2vec.py
Normal file
@ -0,0 +1,42 @@
|
||||
import pathlib
|
||||
import gensim
|
||||
|
||||
TEXTS_DIR = '../data/texts/'
|
||||
EXCLUDE = ['Wellcome_TALKS-ABOUT-FLOWERS']
|
||||
OUTPUT = '../data/models/doc2vec.model'
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
print("1. Building corpus")
|
||||
|
||||
dirs = [d for d in pathlib.Path(TEXTS_DIR).iterdir() if d.is_dir() and d.stem not in EXCLUDE]
|
||||
|
||||
tagged_corpus = []
|
||||
i = 0
|
||||
for d in dirs:
|
||||
files = list(d.glob('*.txt'))
|
||||
for f in files:
|
||||
with f.open() as fp:
|
||||
text = fp.read()
|
||||
tokens = gensim.utils.simple_preprocess(text, max_len=25)
|
||||
tag_doc = gensim.models.doc2vec.TaggedDocument(words=tokens, tags=[i])
|
||||
tagged_corpus.append(tag_doc)
|
||||
i += 1
|
||||
|
||||
print("2. Building vocabulary")
|
||||
model = gensim.models.doc2vec.Doc2Vec(vector_size=50, min_count=2, epochs=40)
|
||||
|
||||
model.build_vocab(tagged_corpus)
|
||||
|
||||
print("3. Training")
|
||||
model.train(tagged_corpus, total_examples=model.corpus_count, epochs=model.epochs)
|
||||
|
||||
print("4. Saving")
|
||||
model.save(OUTPUT)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
18
examine/metric.py
Normal file
18
examine/metric.py
Normal file
@ -0,0 +1,18 @@
|
||||
import gensim
|
||||
import numpy
|
||||
from numpy import dot
|
||||
from numpy.linalg import norm
|
||||
|
||||
MODEL_INPUT = '../data/models/doc2vec.model'
|
||||
|
||||
def cos_dist(v0, v1):
|
||||
return dot(v0, v1) / (norm(v0) * norm(v1))
|
||||
|
||||
class Metric:
|
||||
|
||||
def __init__(self, model_input=MODEL_INPUT):
|
||||
self.model = gensim.models.doc2vec.Doc2Vec.load(model_input)
|
||||
|
||||
def vector(self, text: str):
|
||||
tokens = gensim.utils.simple_preprocess(text, max_len=25)
|
||||
return self.model.infer_vector(tokens)
|
||||
41
speak.py
Normal file
41
speak.py
Normal file
@ -0,0 +1,41 @@
|
||||
import argparse, json, sys, time, random
|
||||
import utterance.voice
|
||||
import utterance.utils
|
||||
|
||||
def main() -> int:
|
||||
|
||||
p = argparse.ArgumentParser()
|
||||
p.add_argument("-c", "--config", type=str, default="config.json", help="configuratin file")
|
||||
p.add_argument("-i", "--iterations", type=int, default=10, help="number of iterations")
|
||||
args = p.parse_args()
|
||||
|
||||
print(args)
|
||||
|
||||
with open(args.config) as f:
|
||||
conf = json.load(f)
|
||||
|
||||
voices = []
|
||||
for v in conf['voices']:
|
||||
voice = utterance.voice.Voice(name=v["name"].upper(), model=v['model_dir'], tokenizer=v['tokeniser_file'], temp=float(v["temperature"]), lenght=32)
|
||||
voices.append(voice)
|
||||
|
||||
nbr_voices = len(voices)
|
||||
current_voice = ""
|
||||
for i in range(args.iterations):
|
||||
rindex = random.randint(0, nbr_voices - 1)
|
||||
v = voices[rindex]
|
||||
if v.name != current_voice:
|
||||
print("==========")
|
||||
print(v.name + ":")
|
||||
current_voice = v.name
|
||||
t = v.utter_one()
|
||||
if t != None:
|
||||
t = utterance.utils.clean(t)
|
||||
t = utterance.utils.format(t)
|
||||
print(t)
|
||||
|
||||
time.sleep(4)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
sys.exit(main())
|
||||
117
speak_metric.py
Normal file
117
speak_metric.py
Normal file
@ -0,0 +1,117 @@
|
||||
import argparse, json, sys, time, random
|
||||
import utterance.voice
|
||||
import utterance.utils
|
||||
import examine.metric
|
||||
|
||||
def format_str(text: str) -> str:
|
||||
t = utterance.utils.clean(text)
|
||||
return utterance.utils.format(t)
|
||||
|
||||
|
||||
def main() -> int:
|
||||
|
||||
p = argparse.ArgumentParser()
|
||||
p.add_argument("-c", "--config", type=str, default="config.json", help="configuratin file")
|
||||
p.add_argument("-i", "--iterations", type=int, default=10, help="number of iterations")
|
||||
args = p.parse_args()
|
||||
|
||||
print(args)
|
||||
|
||||
with open(args.config) as f:
|
||||
conf = json.load(f)
|
||||
|
||||
voices = []
|
||||
for v in conf['voices']:
|
||||
voice = utterance.voice.Voice(name=v["name"].upper(), model=v['model_dir'], tokenizer=v['tokeniser_file'], temp=float(v["temperature"]), lenght=16)
|
||||
voices.append(voice)
|
||||
|
||||
nbr_voices = len(voices)
|
||||
|
||||
state = 'c'
|
||||
|
||||
metric = examine.metric.Metric(model_input='data/models/doc2vec.model')
|
||||
|
||||
s = set(range(0, nbr_voices - 1))
|
||||
|
||||
rindex = random.sample(s, 1)[0]
|
||||
|
||||
v = voices[rindex]
|
||||
uv = v.utter_one()
|
||||
uv = format_str(uv)
|
||||
|
||||
v_vec = metric.vector(uv)
|
||||
|
||||
|
||||
while state == 'c':
|
||||
|
||||
candidates = random.sample(s, 3)
|
||||
|
||||
results = []
|
||||
for c in candidates:
|
||||
if c == rindex:
|
||||
continue
|
||||
vc = voices[c]
|
||||
vc_texts = vc.utter_n(n=150)
|
||||
for t in vc_texts:
|
||||
t = format_str(t)
|
||||
t_vec = metric.vector(t)
|
||||
d = examine.metric.cos_dist(v_vec, t_vec)
|
||||
results.append([d, t, c])
|
||||
|
||||
# vv = voices[rrindex]
|
||||
# texts = vv.utter_n(n=150)
|
||||
# # texts = v.utter_n(n=150)
|
||||
# results = []
|
||||
# for t in texts:
|
||||
# t = format_str(t)
|
||||
# t_vec = metric.vector(uv)
|
||||
# d = examine.metric.cos_dist(v_vec, t_vec)
|
||||
# results.append((d, t))
|
||||
|
||||
results.sort(key=lambda t: t[0], reverse=True)
|
||||
|
||||
print('----------------------------')
|
||||
print(v.name + ":")
|
||||
print(uv)
|
||||
print('----------------------------')
|
||||
|
||||
for r in results[:2]:
|
||||
print('-->' + str(r[0]))
|
||||
print(r[1])
|
||||
print('+++++++++++++++++++++++++')
|
||||
|
||||
|
||||
# new round
|
||||
|
||||
top = results[0]
|
||||
rindex = top[2]
|
||||
v = voices[rindex]
|
||||
uv = top[1]
|
||||
v_vec = metric.vector(top[1])
|
||||
|
||||
|
||||
state = input("Continue? ")
|
||||
|
||||
|
||||
|
||||
|
||||
# nbr_voices = len(voices)
|
||||
# current_voice = ""
|
||||
# for i in range(args.iterations):
|
||||
# rindex = random.randint(0, nbr_voices - 1)
|
||||
# v = voices[rindex]
|
||||
# if v.name != current_voice:
|
||||
# print("==========")
|
||||
# print(v.name + ":")
|
||||
# current_voice = v.name
|
||||
# t = v.utter_one()
|
||||
# if t != None:
|
||||
# t = utterance.utils.clean(t)
|
||||
# t = utterance.utils.format(t)
|
||||
# print(t)
|
||||
|
||||
# time.sleep(4)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
sys.exit(main())
|
||||
0
utterance/__init__.py
Normal file
0
utterance/__init__.py
Normal file
@ -1,29 +0,0 @@
|
||||
{
|
||||
"voices": [
|
||||
{
|
||||
"name": "Ralph",
|
||||
"model_dir": "../data/tokens+models/Emerson-Nature.txt_bs=64_ns=8000_vs=5000",
|
||||
"tokeniser_file": "../data/tokens+models/Emerson-Nature.txt_bs=64_ns=8000_vs=5000/Emerson-Nature.txt_ns=5000.tokenizer.json",
|
||||
"temperature": "0.9"
|
||||
},
|
||||
{
|
||||
"name": "Jean",
|
||||
"model_dir": "../data/tokens+models/Lafontaine-Fables[english].txt_bs=64_ns=8000_vs=5000",
|
||||
"tokeniser_file": "../data/tokens+models/Lafontaine-Fables[english].txt_bs=64_ns=8000_vs=5000/Lafontaine-Fables[english].txt_ns=5000.tokenizer.json",
|
||||
"temperature": "1.2"
|
||||
},
|
||||
{
|
||||
"name": "Blake",
|
||||
"model_dir": "../data/tokens+models/Blake-Songs-of-Innocence-and-of-Experience.txt_bs=64_ns=8000_vs=5000",
|
||||
"tokeniser_file": "../data/tokens+models/Blake-Songs-of-Innocence-and-of-Experience.txt_bs=64_ns=8000_vs=5000/Blake-Songs-of-Innocence-and-of-Experience.txt_ns=5000.tokenizer.json",
|
||||
"temperature": "1.5"
|
||||
},
|
||||
{
|
||||
"name": "Friedrich",
|
||||
"model_dir": "../data/tokens+models/Schelling-ON-THE-RELATION-OF-THE-PLASTIC-ARTS-TO-NATURE.txt_bs=64_ns=8000_vs=5000",
|
||||
"tokeniser_file": "../data/tokens+models/Schelling-ON-THE-RELATION-OF-THE-PLASTIC-ARTS-TO-NATURE.txt_bs=64_ns=8000_vs=5000/Schelling-ON-THE-RELATION-OF-THE-PLASTIC-ARTS-TO-NATURE.txt_ns=5000.tokenizer.json",
|
||||
"temperature": "1.5"
|
||||
}
|
||||
|
||||
]
|
||||
}
|
||||
@ -1,60 +0,0 @@
|
||||
import argparse, json, sys, time, random
|
||||
import spacy
|
||||
from aitextgen import aitextgen
|
||||
import string
|
||||
|
||||
def clean(text: str) -> str:
|
||||
|
||||
s = text.split('\n')
|
||||
|
||||
if(len(s) > 0):
|
||||
tok_1 = s[0].split(' ')
|
||||
if len(tok_1) > 0 and tok_1[0].strip() in string.punctuation:
|
||||
s_1 = ' '.join(tok_1[1:])
|
||||
s[0] = s_1.capitalize()
|
||||
else:
|
||||
s[0] = s[0].capitalize()
|
||||
|
||||
return '\n'.join(s)
|
||||
|
||||
def format(text: str) -> str:
|
||||
|
||||
return text.replace('\r\n', '\n').replace('\n\n', '\n')
|
||||
|
||||
def main() -> int:
|
||||
|
||||
p = argparse.ArgumentParser()
|
||||
p.add_argument("-c", "--config", type=str, default="config.json", help="configuratin file")
|
||||
p.add_argument("-i", "--iterations", type=int, default=10, help="number of iterations")
|
||||
args = p.parse_args()
|
||||
|
||||
print(args)
|
||||
|
||||
with open(args.config) as f:
|
||||
conf = json.load(f)
|
||||
|
||||
voices = []
|
||||
for v in conf['voices']:
|
||||
a = aitextgen(model_folder=v['model_dir'], tokenizer_file=v['tokeniser_file'])
|
||||
voices.append({"name": v["name"].upper(), "a": a, "temp": float(v["temperature"])})
|
||||
|
||||
nbr_voices = len(voices)
|
||||
current_voice = ""
|
||||
for i in range(args.iterations):
|
||||
rindex = random.randint(0, nbr_voices - 1)
|
||||
v = voices[rindex]
|
||||
if v['name'] != current_voice:
|
||||
print("==========")
|
||||
print(v['name'] + ":")
|
||||
current_voice = v['name']
|
||||
t = v['a'].generate(n=1, max_lenght=32, temperature=v['temp'], return_as_list=True)[0]
|
||||
if t != None:
|
||||
t = clean(t)
|
||||
t = format(t)
|
||||
print(t)
|
||||
|
||||
time.sleep(4)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
sys.exit(main())
|
||||
19
utterance/utils.py
Normal file
19
utterance/utils.py
Normal file
@ -0,0 +1,19 @@
|
||||
import string
|
||||
|
||||
def clean(text: str) -> str:
|
||||
|
||||
s = text.split('\n')
|
||||
|
||||
if(len(s) > 0):
|
||||
tok_1 = s[0].split(' ')
|
||||
if len(tok_1) > 0 and tok_1[0].strip() in string.punctuation:
|
||||
s_1 = ' '.join(tok_1[1:])
|
||||
s[0] = s_1.capitalize()
|
||||
else:
|
||||
s[0] = s[0].capitalize()
|
||||
|
||||
return '\n'.join(s)
|
||||
|
||||
def format(text: str) -> str:
|
||||
|
||||
return text.replace('\r\n', '\n').replace('\n\n', '\n')
|
||||
18
utterance/voice.py
Normal file
18
utterance/voice.py
Normal file
@ -0,0 +1,18 @@
|
||||
from aitextgen import aitextgen
|
||||
import utterance.utils
|
||||
|
||||
class Voice:
|
||||
|
||||
def __init__(self, name: str, model: str, tokenizer: str, temp: int, lenght: int):
|
||||
self.name = name
|
||||
self.temp = temp
|
||||
self.lenght = lenght
|
||||
self.v = aitextgen(model_folder=model, tokenizer_file=tokenizer)
|
||||
|
||||
def utter_n(self, n: int, temp: float = None, lenght: int = None):
|
||||
t = self.temp if temp != None else temp
|
||||
l = self.lenght if lenght != None else lenght
|
||||
return self.v.generate(n=n, max_lenght=l, temperature=t, return_as_list=True)
|
||||
|
||||
def utter_one(self, temp: int = None, lenght: float = None) -> str:
|
||||
return self.utter_n(n=1, temp=temp, lenght=lenght)[0]
|
||||
Loading…
x
Reference in New Issue
Block a user