revert demo
This commit is contained in:
parent
e0dada02f0
commit
9b0a4b5720
@ -12,11 +12,11 @@ from pathlib import Path
|
||||
def suffix(bs: int, ns: int, vs: int) -> str:
|
||||
return f"_bs={bs}_ns={ns}_vs={vs}"
|
||||
|
||||
def train(ouputdir: Path, blocksize: int, vocabsize: int, num_steps: int, gpu: bool = False) -> str:
|
||||
def train(filepath: str, ouputdir: Path, blocksize: int, vocabsize: int, num_steps: int, gpu: bool = False) -> str:
|
||||
|
||||
from aitextgen.TokenDataset import TokenDataset
|
||||
from transformers import GPT2Config
|
||||
# from aitextgen.utils import build_gpt2_config
|
||||
# from aitextgen.TokenDataset import TokenDataset
|
||||
# from transformers import GPT2Config
|
||||
from aitextgen.utils import build_gpt2_config
|
||||
from aitextgen import aitextgen
|
||||
|
||||
exts = ['.json', '.gz']
|
||||
@ -32,27 +32,27 @@ def train(ouputdir: Path, blocksize: int, vocabsize: int, num_steps: int, gpu: b
|
||||
tok = str(files[1])
|
||||
dat = str(files[0])
|
||||
|
||||
# config = build_gpt2_config(vocab_size=vocabsize, max_lenght=blocksize)
|
||||
config = build_gpt2_config(vocab_size=vocabsize, max_lenght=blocksize, dropout=0.0, n_embd=256, n_layer=8, n_head=8)
|
||||
|
||||
config = GPT2Config(
|
||||
vocab_size=vocabsize,
|
||||
n_positions=blocksize,
|
||||
n_ctx=blocksize,
|
||||
resid_pdrop=0.0,
|
||||
embd_pdrop=0.0,
|
||||
attn_pdrop=0.0,
|
||||
summary_first_dropout=0.0,
|
||||
bos_token_id=0,
|
||||
eos_token_id=0
|
||||
)
|
||||
# config = GPT2Config(
|
||||
# vocab_size=vocabsize,
|
||||
# n_positions=blocksize,
|
||||
# n_ctx=blocksize,
|
||||
# resid_pdrop=0.0,
|
||||
# embd_pdrop=0.0,
|
||||
# attn_pdrop=0.0,
|
||||
# summary_first_dropout=0.0,
|
||||
# bos_token_id=0,
|
||||
# eos_token_id=0
|
||||
# )
|
||||
|
||||
print(config)
|
||||
|
||||
ai = aitextgen(tokenizer_file=tok, config=config)
|
||||
ai = aitextgen(config=config, tokenizer_file=tok, to_gpu=gpu)
|
||||
|
||||
data = TokenDataset(dat, tokenizer_file=tok, block_size=blocksize, from_cache=True)
|
||||
# data = TokenDataset(dat, tokenizer_file=tok, block_size=blocksize, from_cache=True)
|
||||
|
||||
ai.train(data, output_dir=str(ouputdir), batch_size=16, num_steps=num_steps, generate_every=1000, save_every=1000, num_workers=4, to_gpu=gpu)
|
||||
ai.train(filepath, output_dir=str(ouputdir), line_by_line=False, from_cache=False, learning_rate=1e-3, batch_size=256, num_steps=num_steps, generate_every=1000, save_every=1000, num_workers=4)
|
||||
|
||||
return "Done!"
|
||||
|
||||
@ -68,7 +68,7 @@ def encode(filepath: str, blocksize: int, vocabsize: int, ouputdir: Path, lineby
|
||||
else:
|
||||
return "text input is not valid"
|
||||
|
||||
from aitextgen.TokenDataset import TokenDataset
|
||||
# from aitextgen.TokenDataset import TokenDataset
|
||||
from aitextgen.tokenizers import train_tokenizer
|
||||
|
||||
#NOTE: vocab_size is fixed since this is not yet in train_tokenizer
|
||||
@ -79,20 +79,21 @@ def encode(filepath: str, blocksize: int, vocabsize: int, ouputdir: Path, lineby
|
||||
train_tokenizer(text, vocab_size=vocabsize, prefix=str(fn))
|
||||
else:
|
||||
train_tokenizer(files=[str(x) for x in text], vocab_size=vocabsize, prefix=str(fn))
|
||||
tok_fn = str(fn) + ".tokenizer.json"
|
||||
|
||||
fnn = ouputdir / (f_path.name + f"_bs={blocksize}_ns={vocabsize}")
|
||||
dataset_fn = str(fnn) + ".tar.gz"
|
||||
# tok_fn = str(fn) + ".tokenizer.json"
|
||||
|
||||
print(tok_fn)
|
||||
print(dataset_fn)
|
||||
# fnn = ouputdir / (f_path.name + f"_bs={blocksize}_ns={vocabsize}")
|
||||
# dataset_fn = str(fnn) + ".tar.gz"
|
||||
|
||||
if type(text) is str:
|
||||
data = TokenDataset(file_path=text, tokenizer_file=tok_fn, block_size=blocksize, line_by_line=linebyline)
|
||||
else:
|
||||
texts = [x.read_text() for x in text]
|
||||
data = TokenDataset(texts=texts, tokenizer_file=tok_fn, block_size=blocksize, line_by_line=linebyline)
|
||||
data.save(cache_destination=dataset_fn)
|
||||
# print(tok_fn)
|
||||
# print(dataset_fn)
|
||||
|
||||
# if type(text) is str:
|
||||
# data = TokenDataset(file_path=text, tokenizer_file=tok_fn, block_size=blocksize, line_by_line=linebyline)
|
||||
# else:
|
||||
# texts = [x.read_text() for x in text]
|
||||
# data = TokenDataset(texts=texts, tokenizer_file=tok_fn, block_size=blocksize, line_by_line=linebyline)
|
||||
# data.save(cache_destination=dataset_fn)
|
||||
|
||||
return "encode success"
|
||||
|
||||
@ -101,8 +102,8 @@ def main() -> int:
|
||||
p = argparse.ArgumentParser()
|
||||
p.add_argument("text", type=str, help="text file path to be tokenised and encoded")
|
||||
p.add_argument("-b", "--blocksize", type=int, choices=[32, 64, 128, 256, 1024], default=64, help="block size, default=64 (corresponds to GPT-2 'max_lenght' config)")
|
||||
p.add_argument("-s", "--numsteps", type=int, default=10000)
|
||||
p.add_argument("-v", "--vocabsize", type=int, default=1000)
|
||||
p.add_argument("-s", "--numsteps", type=int, default=8000)
|
||||
p.add_argument("-v", "--vocabsize", type=int, default=5000)
|
||||
p.add_argument("--ouputdir", type=str, default="data/tokens+models/")
|
||||
p.add_argument("--gpu", action="store_true")
|
||||
p.add_argument("--line_by_line", action="store_true")
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user