NATURESPEAK-ML-UTTER/tokenise+train.py
2022-02-09 18:49:18 +01:00

130 lines
4.1 KiB
Python

import argparse, os, sys
from pathlib import Path
# from aitextgen.TokenDataset import TokenDataset
# from aitextgen.tokenizers import train_tokenizer
# from aitextgen.utils import GPT2ConfigCPU
# from aitextgen.utils import build_gpt2_config
# from aitextgen import aitextgen
# import tokenise as tk
# import train as tr
def suffix(bs: int, ns: int, vs: int) -> str:
return f"_bs={bs}_ns={ns}_vs={vs}"
def train(ouputdir: Path, blocksize: int, vocabsize: int, num_steps: int, gpu: bool = False) -> str:
from aitextgen.TokenDataset import TokenDataset
from aitextgen.utils import build_gpt2_config
from aitextgen import aitextgen
exts = ['.json', '.gz']
files = [x for x in ouputdir.glob('*') if x.suffix in exts and x != "config.json"]
if len(files) == 2:
if files[0].suffix == '.json':
tok = str(files[0])
dat = str(files[1])
else:
tok = str(files[1])
dat = str(files[0])
# config = build_gpt2_config(vocab_size=vocabsize, max_lenght=blocksize)
config = GPT2Config(
vocab_size=vocabsize,
n_positions=blocksize,
n_ctx=blocksize,
resid_pdrop=0.0,
embd_pdrop=0.0,
attn_pdrop=0.0,
summary_first_dropout=0.0,
bos_token_id=0,
eos_token_id=0
)
print(config)
ai = aitextgen(tokenizer_file=tok, config=config)
data = TokenDataset(dat, tokenizer_file=tok, block_size=blocksize, from_cache=True)
ai.train(data, output_dir=str(ouputdir), batch_size=16, num_steps=num_steps, generate_every=1000, save_every=1000, num_workers=4, to_gpu=gpu)
return "Done!"
def encode(filepath: str, blocksize: int, vocabsize: int, ouputdir: Path, verbose: bool = False) -> str:
f_path = Path(filepath)
if f_path.is_dir():
text = [x for x in f_path.glob('*') if x.is_file()]
elif f_path.is_file():
text = str(f_path)
else:
return "text input is not valid"
from aitextgen.TokenDataset import TokenDataset
from aitextgen.tokenizers import train_tokenizer
#NOTE: vocab_size is fixed since this is not yet in train_tokenizer
#see https://github.com/minimaxir/aitextgen/blob/master/aitextgen/tokenizers.py
fn = ouputdir / (f_path.name + f"_ns={vocabsize}")
if type(text) is str:
train_tokenizer(text, vocab_size=vocabsize, prefix=str(fn))
else:
train_tokenizer(files=[str(x) for x in text], vocab_size=vocabsize, prefix=str(fn))
tok_fn = str(fn) + ".tokenizer.json"
fnn = ouputdir / (f_path.name + f"_bs={blocksize}_ns={vocabsize}")
dataset_fn = str(fnn) + ".tar.gz"
print(tok_fn)
print(dataset_fn)
if type(text) is str:
data = TokenDataset(file_path=text, tokenizer_file=tok_fn, block_size=blocksize, line_by_line=True)
else:
texts = [x.read_text() for x in text]
data = TokenDataset(texts=texts, tokenizer_file=tok_fn, block_size=blocksize, line_by_line=True)
data.save(cache_destination=dataset_fn)
return "encode success"
def main() -> int:
p = argparse.ArgumentParser()
p.add_argument("text", type=str, help="text file path to be tokenised and encoded")
p.add_argument("-b", "--blocksize", type=int, choices=[32, 64, 128, 256, 1024], default=64, help="block size, default=64 (corresponds to GPT-2 'max_lenght' config)")
p.add_argument("-s", "--numsteps", type=int, default=10000)
p.add_argument("-v", "--vocabsize", type=int, default=1000)
p.add_argument("--ouputdir", type=str, default="data/tokens+models/")
p.add_argument("--gpu", action="store_true")
args = p.parse_args()
text = Path(args.text)
if not text.exists():
return args.text + " doesn't exists"
output_dir = Path(args.ouputdir + text.name + suffix(args.blocksize, args.numsteps, args.vocabsize))
if output_dir.is_dir():
exts = ['.json', '.gz', '.bin']
files = [x for x in output_dir.glob('*') if x.suffix in exts]
if len(files) == 4:
print("Token + model already exists > " + output_dir.name)
q = input("Continue? [y/n]")
if q != 'y':
return "Nothing to do..."
else:
output_dir.mkdir()
encode(filepath=args.text, blocksize=args.blocksize, vocabsize=args.vocabsize, ouputdir=output_dir)
train(ouputdir=output_dir, blocksize=args.blocksize, vocabsize=args.vocabsize, num_steps=args.numsteps, gpu=args.gpu)
if __name__ == '__main__':
sys.exit(main())