NATURESPEAK-ML-UTTER/speak_broadcast.py
2022-03-20 10:45:12 +01:00

195 lines
4.5 KiB
Python

import argparse, json, sys, time, random, logging, signal, threading
import utterance.voice
import utterance.utils
import utterance.osc
import examine.metric
logging.basicConfig(level=logging.ERROR)
UTTERANCE_LEN = 16 #<--------------- these should be in config
NUM_METRIC_GEN = 50
NUM_SAMPLE_VOICES = 3
broadcast = None
metric = None
exit = False
terminal = False
def format_str(text) -> str:
t = utterance.utils.clean(text)
return utterance.utils.format(t)
def utter_one(v) -> str:
u = v.utter_one()
return format_str(u)
def utter_one_vectorise(v):
global metric
uv = utter_one(v)
uv_vec = metric.vector(uv)
return uv, uv_vec
def utter_n_vectorise_distance(v, n, vec):
global metric
results = []
texts = v.utter_n(n=n)
for t in texts:
t = format_str(t)
t_vec = metric.vector(t)
d = examine.metric.cos_dist(vec, t_vec)
results.append([d, t, v])
return results
def terminal_utterance(utterance):
if terminal:
print(utterance, end="")
def broadcast_utterance(v, utterance):
global broadcast, exit
text = f"{v.name.upper()} : {v.temp}\n"
broadcast.utterance(text, v.channel)
terminal_utterance(text)
time.sleep(2)
frags = v.fragments(utterance)
for f in frags:
text += f
broadcast.utterance(text, v.channel)
terminal_utterance(f)
time.sleep(2)
if exit:
return
broadcast.command('clear')
print("==========")
time.sleep(2)
def find_candidates(v, uv_vec, voices, results):
logging.info(f"LOOP::finding candidates")
start = time.time()
candidates = random.sample(voices, NUM_SAMPLE_VOICES)
for c in candidates:
if exit:
break
if c == v:
continue
results += utter_n_vectorise_distance(c, NUM_METRIC_GEN, uv_vec)
results.sort(key=lambda t: t[0], reverse=True)
lapse = time.time() - start
logging.info(f"LOOP::done - {lapse} secs")
def update():
global exit
while not exit:
utterance.osc.update()
time.sleep(0.2)
def signal_terminate(signum, frame):
global exit
logging.warning("::SIGNAL TERMINATE::")
exit = True
def main() -> int:
global broadcast, metric, terminal
p = argparse.ArgumentParser()
p.add_argument("-c", "--config", type=str, default="voice.config.json", help="configuratin file")
p.add_argument("-i", "--iterations", type=int, default=10, help="number of iterations")
p.add_argument("-t", "--terminal", action=argparse.BooleanOptionalAction, help="print to terminal")
args = p.parse_args()
logging.info(f"INIT::loading config file - {args.config}")
with open(args.config) as f:
conf = json.load(f)
logging.info(conf)
terminal = args.terminal
#--------------------#
# VOICES
#--------------------#
logging.info(f"INIT::creating voices")
voices = []
for v in conf['voices']:
model = v['model']
voice = utterance.voice.Voice(name=v["name"].upper(), model=model['model_dir'], tokenizer=model['tokeniser_file'], temp=float(model["temperature"]), lenght=UTTERANCE_LEN)
voice.set_channel(v['osc_channel']['root'], v['osc_channel']['utterance'])
voices.append(voice)
#--------------------#
# NET
#--------------------#
logging.info(f"INIT::setting up OSC")
utterance.osc.start_osc()
broadcast = utterance.osc.OscBroadcaster(name="osc_broadcast", host=conf['host_voicemachine'], port=conf['port_voicemachine'], command_channel=conf['command_osc_channel'])
def temperature_cb(temp, name):
for v in voices:
if v.name == name:
v.temp = temp
receiver = utterance.osc.OscReceiver(name="osc_receiver", host=conf['host_machinespeak'], port=conf['port_machinespeak'], callback_fn=temperature_cb)
#--------------------#
# METRIC
#--------------------#
logging.info(f"INIT::loading doc2vec metrics")
metric = examine.metric.Metric(model_input='data/models/doc2vec.model')
#--------------------#
# A
#--------------------#
logging.info(f"INIT::generating first utterance")
random.seed(time.time())
v = random.choice(voices)
uv, uv_vec = utter_one_vectorise(v)
t_update = threading.Thread(target=update)
t_update.start()
while not exit:
results = []
t = threading.Thread(target=find_candidates, args=[v, uv_vec, voices, results])
t.start()
logging.info(f"LOOP::broadcasting {v.name}")
broadcast_utterance(v, uv)
t.join()
# ok here we need to randomise maybe...?!
# ([d, t, v])
choice = results[0]
v = choice[2]
uv = choice[1]
uv_vec = metric.vector(uv)
logging.info(f"LOOP::next {v.name}")
t_update.join()
logging.info(f"TERMINATE::terminating OSC")
utterance.osc.terminate_osc()
logging.info(f"FIN")
if __name__ == '__main__':
signal.signal(signal.SIGINT, signal_terminate)
sys.exit(main())