Alan Kay: Transforming the Computer
into a Communication Medium

Susan B. Barnes
Rochester Institute of Technology

Alan Kay is referred to as the “father of the personal computer”
because his 1969 doctoral thesis described an early prototype of
personal computing. Kay’s ideas contributed to the transformation of
the computer from a calculating machine to a communication
medium. This article focuses on Kay’s vision for personal computing.

Alan Kay’s visionary ideas about computers
were instrumental in transforming the com-
puter from an office machine into a main-
stream communication medium. Throughout
his career at the legendary Xerox PARC (Palo
Alto Research Center), he encouraged his
colleagues to design small notebook-size com-
puters. However, in the early 1970s, the
technology was not yet available to transform
Kay’s vision into a reality. As a result, Kay
focused on software design and the creation of
programs easy enough for children to use. This
led to the development of overlapping win-
dows, and the object-oriented software pro-
gram called Smalltalk. In addition, Kay and his
team advanced the design of graphical user
interfaces (GUIs) that were invented in the
1960s. Their GUI design concepts were later
popularized by Apple Computer’s Macintosh
and Microsoft’s Windows software. Kay’s re-
search goal was to make a functional prototype
of a computer that had everything but the
right size. Today, many computer users in-
teract with notebook computers that incorpo-
rate Kay's design concepts.

In this article, which I wrote in cooperation
with Alan Kay, I explore the background
influences that led up to Kay’s innovative
design concepts.

Early years

Alan Curtis Kay (see Figure 1) was born in
1940 in Springfield, Massachusetts. His father
was a physiologist who designed arm and leg
prostheses, and his mother was a musician
who taught him music. Kay grew up in an
environment of art, literature, and science. He
could read by the age of three, and by the time
he started school, Kay had already read several
hundred books. In 1950, Kay’s family moved
to New York City where he attended Brooklyn

18 IEEE Annals of the History of Computing Published by the IEEE Computer Society

Technical High School. After high school, he
went to college but before completing his
undergraduate degree, Kay joined the US Air
Force in 1962.

While in the air force, Kay discovered
computers. He passed an aptitude test to
become an IBM 1401 programmer and was
given a one-week IBM programming course.
He gained further experience by working with
a variety of computers including the Bur-
roughs B500. In the air force, he also learned
approaches to data abstraction. Programmers
had to figure out how to transport data files on
computers that had no standard operating
system. In one instance, an unknown pro-
grammer decided to divide a file into three
parts. Part three was the actual data: the
second part contained Burroughs 220 proce-
dures plus instructions on how to access
records and fields to copy and update part
three data, and the first part included an array
of relative pointers into entry points of the
part two procedures. The data bundle, in-
cluding its procedures, could be directly used
at anew site. This led to the idea that a program
could use procedures without knowing how
the data were represented,’ a concept that later
contributed to Kay’s development of object-
oriented programming languages.

After leaving the air force, Kay worked his
way through college, programming weather
data retrieval systems for the National Center
for Atmospheric Research. While doing this
work, he became interested in simulation and
in how one machine could replicate another
machine, an idea that also influenced his later
work.

Kay finished his undergraduate degree work
at the University of Colorado, where he helped
debug a CDC 6600 machine. As an undergrad-
uate, he read Gordon Moore’s 1965 article,

1058-6180/07/$25.00 © 2007 IEEE

which predicted the future of integrated
silicon on chips that would exponentially
improve in density and cost over many years.
This prediction became known as Moore’s law
and it forecast a future of smaller computers.

University of Utah

After completing his undergraduate degree
in mathematics and molecular biology, Kay
went on to earn his doctorate from the
computer science program, headed by Dave
Evans, at the University of Utah. Utah’s
computer science program was financed by
the Department of Defense’s Advanced Re-
search Projects Agency (ARPA) run by J.C.R.
Licklider and later by Robert Taylor. Licklider’s
vision of ‘“man-machine symbiosis” (hu-
man—computer interaction) had influenced
the interactive computer projects that ARPA
funded. In 1968, Licklider and Taylor pub-
lished an article titled “The Computer as
a Communication Device.”? The article de-
scribed conceptual ideas for the design of
computer networks that would support hu-
man communication, and it also influenced
ARPA research. Kay was one of the many
graduate students attending ARPA-sponsored
conferences that contributed to ARPA research
and projects, such as time-sharing and the
early Arpanet.

During his graduate work, Kay was influ-
enced by several major technological develop-
ments, including Sketchpad, Simulation Lan-
guage (Simula), flat-screen displays, Logo, and
Engelbart’s interactive computing system.
Evans made all new students read Ivan Suther-
land’s Sketchpad thesis. Sketchpad was the
first interactive computer system, and the first
to use computer graphics along with comput-
er-aided design (CAD). The system’s unique
software program took a drawing (an in-
stance), checked it against the indicated con-
straints, and then attempted to change the
drawing to obey the rules of the constraints.
Master drawings could produce instance draw-
ings and be controlled by constraints. In-
formation was graphically and interactively
displayed to the viewer. More important,
Sketchpad provided direct visual feedback to
the computer user by graphically displaying
information in zooming windows. Users vir-
tually “sketched” their designs on an electron-
ic screen that represented a 1/3 square mile.

In addition to Sketchpad, Kay encountered
Simula, developed in 1965 by Kristen Nygaard
and Ole-Johan Dahl to develop computer
models for production line and manufacturing
systems.® The program was first written as an

; ¢ A Y
Figure 1. “The best way to predict the future is to
invent it.”—Alan Kay. (Courtesy of Alan Kay.)

extension of Algol 60, a popular European
programming language, and was later expand-
ed into a full-scale general-purpose language.
Simula supported discrete-event simulation
construction and introduced object-oriented
programming concepts, including classes, ob-
jects, inheritance, and dynamic binding. Kay
used a biological analogy between ideas in
Sketchpad and Simula: First, cells (instances)
conform to basic ‘““master” behaviors. Second,
cells are autonomous and communicate with
each other by sending messages. Third, cells
become different parts of the organism, de-
pending on the context. These ideas later
became central features of the Smalltalk pro-
gram design, especially the concept of com-
municating through the exchange of mes-
sages.

The University of Utah’s Evans believed
that graduate students should become in-
volved with actual computing projects, and
he helped his students obtain consulting jobs.
He introduced Kay to hardware designer
Edward Cheadle, who was employed at a local
aerospace company. Cheadle was working on
the design of a “little machine” and the two
teamed up. They began building the FLEX
computer (see Figure 2) that would provide
sharp graphics and windowing features. Kay
described FLEX as “the first personal computer

April-June 2007 19

20

Alan Kay: Transforming the Computer

Figure 2. Drawing by Alan Kay of FLEX machine, c.
1968. (Courtesy of Alan Kay.)

to directly support a graphics and simulation-
oriented language.”* In addition to Simula,
FLEX was influenced by previous work done
by others, including Wesley Clark’s LINC
(Laboratory Instrument Computer), a small
computer that weighed several hundred
pounds; the Rand Corporation’s JOSS (John-
niac Open-Shop System); Douglas Engelbart’s
interactive Augmentation System; and Sey-
mour Papert’s LOGO project.

While working on the FLEX machine, Kay
witnessed a demonstration by Engelbart.® In
early 1967, Engelbart visited the University of
Utah and showed films demonstrating the
online System (known as NLS) with its
metaprogramming language. NLS was de-
signed as an interactive tool to augment
human intellect and the collaborative de-
cision-making process. The system included
graphics, hypertext, and a mouse for inputting
commands. Engelbart and his team had built
an entire conceptual world that enabled users
to navigate through ‘“thought vectors in
concept space.” Inspired by Engelbart’s vision
of collaborative computing, Kay wanted to
design systems to be used as personal, dynamic
media by children. Interacting with this new
medium would require a keyboard and stylus.

The design for the FLEX’s interface was
influenced by JOSS and the Graphic Input
Language (Grai).® JOSS was developed as an
Open-Shop system to support 12 personal
communication stations that could be simul-
taneously accessed. In the initial design, users
connected to the system via typewriter term-
inals. Later, the GraiL project was initiated to
investigate new techniques to improve hu-
man—computer communication. This led to
the development of the Rand Tablet, which
supported real-time computer recognition of
hand-printed text, and it could produce pre-
cise boxes from loosely drawn ones. Program-
mers used GraiL and the Rand Tablet to make
flowcharts. The system used direct manipula-

IEEE Annals of the History of Computing

tion (some modeless), which made it a friendly
user interface. Modeless computing lets users
open several different types of programs at the
same time and move back and forth between
them. For instance, a window containing
a drawing program can be open at the same
time as a window containing a word proces-
sing program. While at PARC, Kay later viewed
modelessness as a way to enable users to move
between functions without explicitly exiting
any.

As a PhD student, Kay began to appreciate
the work of media guru Marshall McLuhan.
After reading Understanding Media, Kay realized
that the most interesting thing about any
medium is what you have to become to
communicate with it. Anyone who wants to
receive a message must first internalize the
medium so it can be subtracted out to leave
the message behind. People become different
types of thinkers after they internalize a medi-
um. As a result, Kay began to think about the
computer as a communications medium rath-
er than as a tool. Accordingly, a high-resolu-
tion display screen was needed for this new
medium that would approximate the quality
of a printed page. If computer screen quality
were similar to book quality, computers could
be introduced into schools. A technology that
could produce this type of image quality was
a flat-panel display screen.

While attending an ARPA graduate student
meeting in summer 1968, Kay saw a one-inch
square piece of glass with neon gas that could
make individual spots light up on command.
It was the first flat-panel display screen.
Recalling Moore’s law, Kay began to calculate
how long it would take to put a computer on
the back of flat-panel screen technology and
estimated that it would be sometime in the
late 1970s or early 1980s.

At this point, Kay’s concept about compu-
ters began to evolve as he envisioned millions
of personal machines and users, instead of
thousands of institutional mainframes. Per-
sonal machines would need to be designed as
extensional systems in which end users could
tailor and direct the construction of their
tools. Shortly after this realization, Kay visited
one of Seymour Papert’s early Logo tests,
which would have a bearing on his thought
process concerning personal machines and
users. Between 1968 and 1969, Papert worked
with 7th-grade students at the Muzzey Junior
High School in Lexington, Massachusetts.

In the Logo project, students used the
computer as a learning environment. Prior to
working on Logo, Papert had spent five years

working with educational psychologist Jean
Piaget. Piaget began a revolution in learning
theory with his observations on how children
learn. His research indicated that learning is
not simply something adults impose on
children through education. In contrast, learn-
ing is deeply embedded in the ways in which
children are innately equipped to react to their
natural environments. Applying Piaget’s ideas
to learning, Papert understood that the com-
puter’s representational capabilities and re-
sponsiveness could be used to construct
simulated “microworlds” for children to ex-
plore and learn mathematical principles.”
Children would explore the computer-simu-
lated worlds in a manner similar to how they
explored the natural environment, while
simultaneously learning the language of math
(see Figure 3).

When Kay visited Papert in 1968, he saw
children writing computer programs that
generated poetry, translated English into Pig
Latin, and created arithmetic environments.
He then became interested in the analogy
between print literacy and the Logo program.
Prior to visiting Papert, Kay believed that you
needed to be an adult to be a programmer.
After seeing children using Logo, Kay decided
that computer languages should be developed
on a level for children to understand. Children
should be able to learn to read and write with
this new medium. Kay described this as
follows:

The ability to “read” a medium means you
can access materials and tools created by
others. The ability to “write” in a medium
means you can generate materials and tools
for others. You must have both to be literate.
In print writing, the tools you generate are
rhetorical; they demonstrate and convince. In
computer writing, the tools you generate are
processes; they simulate and decide.

If the computer is only a vehicle, perhaps you
can wait until high school to give “driver’s ed”
on it—but if it’s a medium, then it must be
extended all the way into the world of the
child.®

At this point, Kay envisioned a Kuhnian
paradigm shift in which the computer would
become a revolutionary new communication
medium with a social impact similar to the
invention of the printing press. This new
medium would be designed as a dynamic
process for representing, communicating, and
animating messages with words, images, and

Figure 3. Drawings by Alan Kay of children with
small computers. Created after the visit to
Seymour Papert. (Courtesy of Alan Kay.)

sounds. Kay’s use of the term dynamic simula-
tions referred to the state of images presented
on a computer screen and the ability to change
the information display. Dynamic simulations
had the potential to surpass the book as a form
of communication and annihilate the passive
boredom of television.

Inspired by this realization, Kay made
a cardboard mock-up of his vision for a tablet-
style personal computer with a flat-panel
screen, keyboard, and stylus. The keyboard
and stylus created a balance between the low-
speed tactile freedom offered by a stylus and
the faster keyboard input. Meanwhile, he
continued working on FLEX.

Kay’s thesis was called the “Reactive En-
gine,” and the FLEX computer was completed
in 1969. FLEX was designed with a tablet as
a pointing device, a high-resolution display for
text and animated graphics, multiple win-
dows, and a user interface. Although much of
the hardware and software was considered
successful in terms of computer science re-
search, the design lacked the expressive range
to engage ordinary users. The use of multiple
windows was not simple enough for a wide
array of users. At that time, state-of-the-art
technology could not capture Kay'’s vision for
dynamic personal computing.

Kay’s experiences with FLEX, flat-screen
displays, Grai, McLuhan, and Papert had
come together into a vision of what personal
computing should be. Kay’s dissertation in-
cluded illustrations of both complex diagrams
of functions and line drawings of single-user
machines to be developed at a future date. This
new machine would be a personal, dynamic
medium of communication that children
could use.

April-June 2007 21

22

Alan Kay: Transforming the Computer

SR ERE R

Mokl it fobbee Z

($120 3/t’)
T Mru:ul 4 pavent (3
-u..:hh e of e Y
by i aa 1o bty

Figure 4. Drawings by Alan Kay of KiddiKkomputers. (Courtesy of Alan Kay.)

Small computers

After graduation from the University of
Utah, Kay spent two years as a researcher at the
Stanford Artificial Intelligence Laboratory,
where he began thinking about book-sized
computers that children could use. Kay
wanted to make the smallest possible pre-
notebook computer that would enable him to
learn how children would use this new
technology. During the course of his research,
he discovered Planner, a programmable logic
system developed by Carl Hewitt. At the Al
Lab, he wrote several programming languages
based on a combination of the pattern-
matching schemes of Planner and FLEX.
However, Kay spent most of his thinking time
working on ideas for notebook “KiddieKom-
puters.” In 1970, he made sketches of Kiddie-
Komps, which were later incorporated into
design ideas for the Alto computer, developed
in 1973 at Xerox PARC (see Figure 4).

Xerox PARC

In 1970, Xerox established Xerox PARC to
pursue long-term research to develop ‘“‘the
office of the future”” and hired Robert Taylor to
recruit talented computer scientists from
across the US. Prior to joining Xerox PARC,
Taylor realized that telecommunication net-
works were more than the sending and re-
ceiving of information from one point to
another.? In other words, Taylor discovered
principles of communication as a process
rather than communications as a device: First,
communicators are active participants and
play a central role in the network communi-
cation process. Second, communication is
a mutually reinforcing process, which involves

IEEE Annals of the History of Computing

creativity. Third, the digital computer is
a flexible, interactive medium that can be
used to support cooperative human commu-
nication. Finally, Taylor understood the idea
of common frameworks or the use of mental
models in computer-based communication
exchanges. Mental models are the mental
images of people, objects, and the environ-
ment that form as people interact with others.
For instance, individuals create mental images
of people they meet through electronic mail.
In human—computer interaction, the desktop
is the mental model that makes it easier for
people to operate a computer.

Taylor hired the computer scientists who
built the first interactive systems, the first
augmentation systems, and the first packet-
switching computer networks. In 1971, Kay
switched roles at Xerox PARC, from consultant
to employee. He established the Learning
Research Group, which was interested in all
aspects of communication and the manipula-
tion of knowledge. Central to the group’s
research was the design, development, and
implementation of dynamic media. Compu-
ters are dynamic media because electronic
documents can easily be edited, compared,
and juxtaposed. Kay hired people who shared
his interest in interactive computing and
notebook-size computers, which he called
Dynabooks. The Learning Research Group
established goals to

® provide examples of how Dynabooks could
be used across subject areas;

® study how Dynabooks could help to ex-
pand an individual’s visual and auditory
skills;

® provide access to children so they could
spend time probing the system and search-
ing for personal ways to understand daily
processes; and

¢ study children’s unanticipated uses of the
Dynabook and Smalltalk.”

At PARC, Kay was a visionary force in
helping to develop the tools to transform
computers into a major new communication
medium. He has been described as PARC'’s
“self-defined futurist-in-residence” who
blurted out the unofficial PARC credo: “The
best way to predict the future is to invent it!”’!°
The following excerpt is from a 1971 PARC
memo that Kay wrote:

In the 1990s there will be millions of personal
computers. They will be the size of notebooks
of today, have high-resolution flat-screen re-
flexive displays, weigh less than ten pounds,
have ten to twenty times the computing and
storage capacity of an Alto. Let’s call them
Dynabooks.!!

The Dynabook was described as a powerful
and portable electronic device the size of
a “notebook and destined to become just as
ubiquitous. The Dynabook would carry an
encyclopedia of information inside its circuits
and plug into readily available networks
containing the sum of human knowledge.”'?
Today, the Dynabook is viewed as the vision-
ary prototype of laptop and notebook-sized
computers. The name, Dynabook, was influ-
enced by the writings of Marshall McLuhan
who described the profound cultural impact of
the Gutenberg printing press.'”* By naming
this new medium the Dynabook, Kay wanted
to suggest that the Dynabook would have
a similar cultural impact as Gutenberg tech-
nology.

Computers have the ability to simulate the
details of any descriptive model, which means
that the computer itself can be all other media.
It is a metamedium that can respond to a user’s
queries and experiments. Computers can in-
volve the user in a two-way conversation. A
second key characteristic of a personal com-
puter would be the size of the medium.
Inspired by Moore’s law, Kay envisioned this
new medium as physically the size of a three-
ring notebook with a touch-sensitive liquid-
crystal screen and keyboard for inputting
information. Dynabooks would need a pro-
gramming language and interface that chil-
dren could understand.

Graphical interfaces

In addition to encouraging PARC research-
ers to develop small computers, Kay and his
team created graphical interfaces and the
Smalltalk programming language. During his
early years at PARC, Kay was interested in
developing a totally visual computer language.
The work of psychologists Piaget and Jerome
Bruner showed that one of the dominant
thinking modes of children is visual imagery.
Therefore, Kay’s team incorporated visual
icons into the system'’s interface to make the
machine easier for children to operate. Chil-
dren could first manipulate things on the
screen with their hands, and then use abstract
symbols.

Kay’s theory for designing interfaces was
primarily based on Bruner’s educational theo-
ries. In his book Toward a Theory of Instruction,
Bruner examined the cognitive processing
children use for activities such as problem
solving, conceptualizing, and thinking. Bru-
ner’s work was built on Piaget’s pioneering
efforts. But Piaget and Bruner differed in their
approach to learning mentalities. Piaget be-
lieved that children and adults have a single
mentality that progressed through a series of
stages until the child reaches maturity. He
identified these as the action stage, visual stage,
and logical stage. Children begin understand-
ing the world in a doing stage, in which
thinking is action. For instance, children dig
holes and grasp objects. Consequences of
actions have no meaning for the child because
he or she just acts. In the second stage, the
child’s understanding of the world is dominat-
ed by visual information. A taller glass has
more water in it than a smaller and wider glass
because tall thin glasses ‘“look” larger. Around
the age of 11 or 12, the child begins to enter
a facts and logic stage that is removed from the
visual environment. A child’s single mentality
progresses from a moving to a logic stage.

In contrast, Bruner argued for the existence
of multiple mentalities, which suggested
a model for computer interface design. Bruner
studied children by examining how the child
stores and retrieves information. From his
studies, Bruner suggested that there are prob-
ably three ways in which people translate
experience into a model of the world. The first
stage Bruner called enactive, or learning
through action. In the enactive stage, repre-
sentation is based on learning a set of
responses, which become habitual. The second
stage, iconic, uses a system of representation
that is dependent on visual and other sensory
organization of experience. Finally, in the

April-June 2007 23

24

Alan Kay: Transforming the Computer

third symbolic stage, representation is estab-
lished through words or language.

However, there is a major difference be-
tween the first two stages of representation
and the third symbolic stage. In symbolic
representation, the words used to represent
the world are arbitrary. The arbitrary meanings
assigned to words introduce syntax and gram-
mar into the process of perception. For
example, language introduces lawful syntactic
transformations that make it easy to make
declarative propositions about reality. Bruner
stated:

We observe an event and encode it—the dog
bit the man. From this utterance we can travel
to a range of possible recodings—did the dog
bite the man or did he not? If he had not,
what would have happened and so on?
Grammar also permits us an orderly way of
stating hypothetical propositions that may
have nothing to do with reality.'*

According to Bruner, the ability to view the
world through language and the transforma-
tion of sentences creates a concept of reality
that is not possible with actions or images.
However, before children learn to use symbolic
language, they first progress through the
earlier stages. The child moves from an un-
derstanding of the world that is based on
enactive and visual representation to a world-
view that is abstracted from reality. Building
on Bruner's work on representation that
describes the enactive, iconic, and symbolic
learning mentalities, Kay created a model for
computer interface design. The model was
described by using the slogan ‘“Doing with
Images makes Symbols” (see Figure 5). Kay
described this method as follows:

Now, we agree with the evidence that the
human cognitive facilities are made up of
a doing mentality, an image mentality, and
a symbolic mentality, then any user interface

DOING

with
IMAGES

makes
SYMBOLS
[computer
language]

mouse enactive Know where you are,
manipulate

icons, iconic recognize, compare,

windows configure, concrete

Smalltalk symbolic tie together long
chains or reasoning,
abstract

Figure 5. Kay’s DOING with IMAGES makes SYMBOLS model.'® (Courtesy

of Alan Kay.)

IEEE Annals of the History of Computing

we construct should at least cater to the
mechanisms that seem to be there. But how?
One approach is to realize that no single
mentality offers a complete answer to the
entire range of thinking and problem solving.'®

From Kay’s perspective, the process of
thinking and problem-solving utilizes several
different mentalities. He argued that the most
important creative work in disciplines, such as
science and music, are done in the initial two
mentalities, doing (enactive) and image (icon-
ic). The creative problem-solving process used
in these disciplines is not at all linked to the
symbolic mentality. Furthermore, he argued
that there is a basic difference between using
the iconic and symbolic mentalities, because
the visual system is interested in everything in
a scene. Eyes dart all over the scene and change
directions. People using the iconic mentality
tend not to get blocked because there is always
something new and interesting that appears
and distracts. In contrast, the job of the
symbolic system is to stay within a context
and make indirect connections. As a result, it is
difficult for people using iconic mentality to
get anything accomplished because they get
distracted. Conversely, people who use the
symbolic mentality are good at finishing
things because they can focus for long periods
of time on a single context, but they have
a hard time being creative because they tend to
get blocked. Because none of the mentalities
are supremely useful to the exclusion of the
others, the best interface strategy would be to
force a synergy between them.

To create a synergy, Kay began to incorpo-
rate the three different levels of representation
into an interface design. The mouse would be
a form of enactive representation to actively
navigate and manipulate text and display
icons on a computer screen. Icons and win-
dows were incorporated into the design as
a level of iconic representation. Icons, the
mouse, and the Smalltalk programming lan-
guage were developed to handle the different
levels of representation.

Smalltalk

The Smalltalk programming language was
developed as the result of a bet. Originally, Kay
thought that Smalltalk would be an iconic
programming language and would take two
years to develop. However, after a hallway
discussion with programmers Ted Kaehler and
Dan Ingalls, the idea changed. They chal-
lenged Kay to define a new computer pro-
gramming language on a single page. For two

weeks, Kay worked from four in the morning
until eight at night to solve the problem. The
end result was the outline for Smalltalk, which
Ingalls then implemented.

Smalltalk was further developed by the
Learning Research Group (see Figure 6). Mem-
bers included Kay, Ingalls, Diana Merry,
Kaehler, Adele Goldberg, and Chris Jeffers.
Various interns and summer students also
worked with the group. Team members came
from a variety of backgrounds—Bob Taylor
referred to them as ‘‘the lunatic fringe.” Gold-
berg, Kay’s co-leader of the group, was an
educational specialist and Merry a former
secretary. Ingalls, who took on the role of
transforming many of Kay’s ideas into reality,
eventually became a main designer of the
Smalltalk programming system.

The Smalltalk system, designed to be an
integrated programming environment, con-
sisted of a programming language, debugger,
object-oriented virtual memory, an editor,
screen management, and user interface facili-
ties. Everything in the system was accessed as
an object that could be manipulated by the
programs within the system. The Smalltalk
system had 100 to 200 classes including
streams, processes, files, rectangles, and
splines.

Smalltalk was selected as an innocuous
name for the program because other pro-
gramming systems were often named after
Greek gods, such as Zeus, Odin, and Thor.
Over the next 10 years, Kay and his team
programmed over 80 variations of Smalltalk,
which featured visual feedback and accessibil-
ity to novice users. Kay stated:

The object-oriented nature of Smalltalk was
very suggestive. For example, object-oriented
means that the object knows what it can do.
In the abstract symbolic arena, it means we
should first write the object’s name (or
whatever will fetch it) and then follow with
a message it can understand that asks it to do
something.'®

In Smalltalk, an object is an abstraction of
a computer capability. For example, objects
can represent numbers, lists, text strings,
dictionaries, spatial locations, areas, text
editors, processes, compilers, and debuggers,
plus all the other components the system
requires. Once users understand objects and
messages, the entire system becomes accessi-
ble. Thus, computer users could now identify
an iconic object displayed on the computer

The Learning Group Members:

Alan Kay, Head
Dan Ingalls
Ted Kaehler
Dave Robson
Dick Shoup

Students Included:
Tom Horsley

Steve Saunders
David C. Smith
Radia Perlman

Child Interns Included:
Marian Goldeen (age 13)
Bruce Horn (age 15)

Kathy Mansfield (age 12)

Adele Goldberg
Chris Jeffers
Diana Merry
John Shoch
Steve Weyer

Barbara Deutsch
Steve Purcell
Bob Shur

Dennis Burke (age 12)
Susan Hammet (age 12)
Lisa Jack (age 12)

Steve Putz (age 15)

Support from Other PARC Groups Included:
Dave Boggs Patrick Baudelaire
Larry Clark Bill English

Peter Deutsch Bob Metcalfe
Butler Lampson Alvy Ray Smith
Bob Sproull Larry Tesler
Chuck Thacker

Figure 6. The Research Learning Group and Outside Support.

(Courtesy of Alan Kay.)

screen and learn the types of messages that
apply to the object.

Smalltalk was the first dynamic object-
oriented programming language (OOPL). Ob-
ject-oriented refers to software design based on
objects that know what they can do. First, the
user identifies the object by its name or the
command that will fetch it. This is followed by
a message the object can understand. For
example, calculation objects understand
mathematical messages. In the object-oriented
model, the object is first selected and then the
user can be provided with a menu of the
commands the object can perform. The object
comes first and the action second.

The Smalltalk programming language was
developed first, and it was then used to build
an operating system and graphical interface.
With Smalltalk, the Xerox researchers built an
entire programming environment that includ-
ed editors, debuggers, and compilers. In turn,
they used these tools to implement several
large-scale applications, such as paint, music,
and animation systems.

Early versions of Smalltalk were tested with
school children from a local junior high
school. Kay believed that a personal compu-
ter’'s content was its ability to create dynamic
models, which includes the interactive tools.
To become literate in this new medium,
children would need to create these tools

April-June 2007 25

Alan Kay: Transforming the Computer

themselves. In the test groups, children were
taught programming by working from exam-
ples of more advanced programs. For instance,
the children were taught how to animate
a simple box. Soon the children were creating
paint, music, illustration, and animation tools.
Over a four-year period, Kay and his team
invited more than 250 children aged 6 to 15
and 50 adults to try versions of Smalltalk with
its interface (see Figure 7). The team then used
the visitor’s suggestions and projects to im-
prove the design.

These experimental projects included pro-
grams for home accounts, information, draw-
ing, painting, music synthesis, writing, and
games. The team, however, encountered the
following problem: in what order and depth
should programming be taught to children?
Early successes could not be easily extended to
larger groups. To solve this problem, Goldberg
developed a series of exercises and design
templates to teach children how to program
in Smalltalk. Using the templates, “the chil-
dren could look at a situation they wanted to
simulate, and decompose it into classes and
messages without having to worry just how
a method would work.”"” Planning could be
done in English, and the notes could later
guide the writing of the code. But, the team
was still not happy with the results.

e b, [ramioes
e o @eveve. ,
:t;::m : :‘”:mh 'n:':'M m‘lm;’;.:iﬂu
window.fy kemath dianaht - o sn windows
Miakt commander.h besle L orestiled s B fome
fila press it daoll e propresshile h idisphy rccung e, <dock
i o ol Mauy i L View
LAY rectamghe. pf chos. write wp
beclean cxpey
ol ¢
Bocxstriy
read itu Biles
oow Anit
Clonw's mds
schedwling - interoupes

It B

T deCnting e nagt
15 the manfe W
b g EAVG

R
y by U trer daa byws
bown by, Kach of Uew dins
vt %4 (5 16ty

Figure 7. Ingalls’ and Kay’s Smalltalk-72 Interface.
(Courtesy of Alan Kay.)

IEEE Annals of the History of Computing

By this point, Kay and his team had
developed the first graphical interface using
a sophisticated object-oriented programming
language. A direct relationship exists between
the philosophy of object-oriented program-
ming and the way people interact with a GUIL
In GUI design, a user first selects a visual object
on the computer screen with a mouse. The
user then chooses an action from a list of
command menus to make the object do
something. For example, the user can select
an icon of a document with the mouse, and
then go to a command menu and choose
“open.” The document will then open and
appear on the computer screen. In addition to
icons, the team integrated modeless interac-
tion into their designs.

In the 1970s, the Smalltalk object-oriented
programming environment seemed fanciful.
However, two aspects of the system—its GUI
and object-oriented programming—now de-
fine the essence of contemporary personal
computing.

Alto: An interim Dynabook

Xerox’s corporate vision was to invent
technologies for electronic offices. The elec-
tronic office concept included capturing,
viewing, storing, retrieving, processing, and
communicating information. However, the
vision of the Computer Science Laboratory at
Xerox PARC was much larger than office
technologies.

Smalltalk ran on the Alto computer, which
was designed as a desktop computer with
a specially constructed monitor. It was de-
veloped as an interim Dynabook: a self-con-
tained system that was essentially a small box
in which disk memory could be inserted. Each
disk had 1,500-page equivalents of storage. In
contrast to ordinary terminals then available,
the PARC researchers developed a system in
which documents looked as if they were
professionally typeset. The incorporation of
typeset documents and graphic images fit with
the Dynabook that Kay envisioned. The Alto
also had a mouse and the popular desktop
environment of icons, folders, and docu-
ments.

The Alto (see Figure 8) was the first distrib-
uted personal computer system. Distributed
personal computing systems are based on
workstations, interconnected local networks
that provided high bandwidth communica-
tion, and network servers that provide shared
capabilities.'® Inherent in the Alto’s design
was the vision that computers could be used to
help people think and communicate. In just

over three months, Chuck Thacker developed
the brilliant design and realization of the Alto.
Thacker did most of the work himself and was
assisted by Kay, Taylor, and Butler Lampson,
who designed Engelbart’s operating system.
During 1971 and early 1972, researchers
working in the Computer Science Laboratory
spent most of their time developing a set of
hardware and software facilities to support
future work. Hardware characteristics were
determined by the needs of the software
systems. Lampson, Kay, and Taylor were in-
volved in the machine’s design criteria. Their
visions were implemented by Thacker, with
help from Ed McCreight, who worked on the
memory disk. The researchers wanted a system
that could supply an entire work environment
for its user, including communications capa-
bility, text and graphics manipulation, and
computing. Moreover, the system should be
apersonal system and communications device.

It was hard for people to believe that an entire
computer is required to meet the needs of one
person. The prevailing attitude was that ma-
chines are fast and people are slow; hence the
merits of time-sharing, which allows one fast
machine to serve many of the slow people. ...
When the machine is required to play the game
on the human’s terms, presenting a pageful of
attractively (or even legibly) formatted text,
graphs, or pictures in a fraction of a second in
which the human can pick out a significant
pattern, it is the other way around: people are
fast, and machines are slow.*’

In contrast to earlier computer systems, the
Alto attempted to emulate many of the
characteristics of paper. The Alto keyboard
resembled a typewriter with eight uncommit-
ted keys that software could use as function or
option keys. Information was also input with
a five-finger keyset, which Engelbart had
successfully used in his NLS system developed
in the mid-1960s. However, the use of this
device required training, and it never became
popularly accepted. In contrast, the mouse
became widely used by the PARC researchers
and later by personal computer users. At PARC,
Engelbart’s analog mouse was converted into
a digital device for use with the Alto.

Original machines contained 128,000 bytes
of main storage with a 2.5-million-byte car-
tridge disk. The main memory was later
expanded to 512,000 bytes. Alto’s processor
was designed to be flexible and expandable. It
was microcoded to enable the researchers to
experiment with new instruction sets and I/O

Figure 8. Xerox Alto Il Workstation. (Courtesy of
Computer History Museum.)

devices. According to Thacker, a key difference
between Alto and other minicomputers of its
time was

that the microprogrammed processor was
shared between the emulation of a target
instruction set and the servicing of up to
fifteen additional fixed-priority tasks, most of
which were associated with the machine’s
input-output devices. Task switching occurred
rapidly, typically every few microseconds.?’

The Massachusetts Institute of Technology
Lincoln Laboratory’s TX-2 had previously used
this technique successfully.

The Alto was designed to be a computing
system that could be adaptable by program-
ming various tasks. However, it was developed
to let users interact with the system as well as
to program it. The system was programmed in
a variety of languages including BCPL (Basic
Combined Programming Language), Mesa,
and Smalltalk. Each language had its own
instruction set and operating system. The
entire system had a common file system
format on the disk along with network proto-
cols established in the BCPL operating system.
Documentation for the Alto’s various pro-
grams and subroutines was collected into
a reference manual. The Smalltalk develop-

April-June 2007 27

28

Alan Kay: Transforming the Computer

ment team, however, was a driving force
behind the development of a consistent pro-
gramming and interface style.

The Alto was connected to an 8.5 X 11 in.
display screen. Although a television set is an
analog technology, the electron beam and
picture elements can be used in digital applica-
tions. Computers can be programmed to turn
on or off picture elements displayed on the
screen. The screen positions can then be stored
in the computer’s memory and saved for later
use. This technique is called bit-mapping
because there is a one-to-one correspondence
between the bits in the computer’s memory
and the picture elements displayed on the
screen. Additionally, the Alto’s developers
used a raster scanner rather than lower-cost
calligraphic techniques that were available at
the time. Display resolution was 606 pixels
horizontally by 808 pixels vertically. The
monitor looked like a television screen turned
sideways to support the display of a full
electronic page of text. The display image itself
was refreshed directly form the main memory
in a method called bit-mapped raster scan.

Because of the limited amount of informa-
tion the screen could display, the PARC
researchers began to think about the screen in
terms of a physical desktop. Kay realized that
people pile pages on top of each other on
a desk; he thought that similarly, they could
place windows atop each other on the screen.
The idea of overlapping windows, originally
developed in 1971, was applied to the screen
display. In fall 1974, Ingalls created a program
called BitBlit, short for bit boundary block
transfer, as a way to shift rectangles on the
Alto’s bitmapped display from one location to
another in a single operation. BitBlit consoli-
dated rectangular drawings into efficient pieces
of microcode. Kay and his team worked BitBlit
operations into the user interface design.
Different programs were placed in multiple
windows, which were effortlessly shuffled on
the screen like pieces of paper. The bit-mapped
display refreshed the window that popped to
the top, but it let the user see other windows in
the background. Using dynamic overlapping
windows, the researchers wanted to be able to
do animation in 2-1/2 dimensions and refresh
objects to the screen in different orders.

Printing

In addition to designing a system that was
easy for users to operate, communication was
an important goal for the Alto designers.
Printers were developed to share information
in a paper format, and networking was

IEEE Annals of the History of Computing

designed for sharing electronic documents
and resources. Designing practical printers
that could make high-quality hard copy of
the images created with an Alto was a chal-
lenge. The first imager developed was an
asynchronous low resolution (200 dots per
inch) device that drove the Xerox Graphics
Printer. A second imager was developed to
store thousands of typeset pages that could be
printed at a rate of 40 pages per minute in
a quality close to xerographic copies. Addi-
tionally, Alto documentation could be stored
in the system and printed on demand.

Although their goal was to develop person-
al computing, the researchers did not want to
lose time-sharing systems’ capability to share
information and physical resources. To meet
this need, Xerox PARC developed Ethernet as
the hardware base along with PUP (PARC
Universal Packet), which preceded TCP/IP
(Transmission Control Protocol/Internet Pro-
tocol). PUP’s creation enabled the researchers
to create a country-wide internet before the
actual Internet was started. In 1976, PARC
researchers had Altos on their desks, laser
printers for publishing documents, and elec-
tronic mail. All of these communication tools
were central to the PARC researchers’ work
activities.

NoteTaker

By 1976, Kay realized that Smalltalk did not
meet his goals for designing a computer
language that children could use to read and
write. The future for Smalltalk was in revamp-
ing the program for adult operators, and
Ingalls transformed it into a full-service pro-
gramming language (see Figure 9).

Smalltalk-76 also marked the end of the
effort of trying to create a language that
children could use. Smalltalk-76 was 200 times
faster than Smalltalk-72. Ingalls described
Smalltalk-76 as follows:

Communication is the metaphor for proces-
sing in the Smalltalk language. The commu-
nication metaphor supports the principle of
modularity, since any attempt to examine or
alter the state of an object is sent as a message
to that object, and the sender need never
know about internal representation. Every
object in Smalltalk is created as an instance
of some class. The class holds the detailed
representation of its instances, the messages to
which they can respond, and the methods for
computing the appropriate responses. The
class is the natural unit of modularity, as it
describes all the external messages understood

by its instance, as well as all the internal
details about methods for computing re-
sponses to messages and representation of
data in the instances.?'

As Ingalls further developed Smalltalk, Kay
shifted his attention toward a new project
called NoteTaker, another notebook-sized
computer. The central idea was to take
a percentage of the Alto’s functionality and
put it into a compact portable or “luggable”
machine. The NoteTaker was designed and
built by Doug Fairbairn. Its design included
a custom-built touch-sensitive display screen
that eliminated the mouse; it also featured
stereo audio speakers with a built-in micro-
phone, 128,000 bytes of main memory with
a rechargeable battery, and an Ethernet port.
NoteTaker ran the Smalltalk multiprocessor
architecture that was closer to the Dynabook
design. The NoteTaker design approach was
later picked up by Osborne Computer.

The actual NoteTaker was a plump attaché
case that looked like the first generation of
“luggable’” computers, which were created six
years later. The case flipped open with the
screen and disk drive set in the larger half to
face the user when the box was laid flat on
a table. The smaller section contained the
keyboard, which connected to the larger half
by a flexible cable. NoteTaker was so difficult
to carry that Larry Tesler and Fairbairn built
a rolling cart for it. The cart enabled them to
slide the computer under an airline seat. It has
been reported that Fairbairn was the first
person to use a personal computer on an
airplane because he turned on the battery-
powered NoteTaker during a flight from
California to Rochester, New York.!© Ten
NoteTakers were built and team members flew
around the US trying to get Xerox managers
interested in the product. Xerox, however,
never produced NoteTakers.

After PARC

In 1979, Steve Jobs viewed a demonstration
of the PARC technologies and applied many of
the concepts to the development of Apple’s
computers. The following year, Kay took
a sabbatical from PARC, leaving Adele Gold-
berg in charge of the group. Goldberg was
instrumental in creating the first commercially
successful version of Smalltalk (Smalltalk-80),
later marketed by a Xerox offshoot called
ParcPlace. For almost 30 years, Smalltalk has
been the language of choice for high-com-
plexity applications, such as Texas Instru-
ments’ semiconductor manufacturing system.

XEROX - tvucsie pussasn arsen

screen restore
Smalltalk quit

Detober 12, l!77
1054 am

1314 disk pages

ow';

Usor wvonts IV passed W0 10 A9 JOCUNWAE WA th b
window 18 actlve. If The Stylus guos aut oF the winuaw,
SEAWIBAr g The BIIEMINU 019 DACH GivOn & CRANKY 0
galn conenv

Responses wn the wisgpiay. I
mvaer ,!,zl[show. rul.u, Wik it Dol
cditivieru show. scroliBar show) o usor agchng,
leave [documerit hide selection,
w:(i‘uvtmmm. scrollbar hide)

e

edittvieny startup ,(L
;cmuolnr startups(self sowD)

patse
ndown ent pe Mown}

GACETIN A & b O
.“Dﬁ-rggaa T

Figure 9. Smalltalk-76 user interface displaying
a variety of applications, including a clock, font
editor, painting editor, iconic menus, and
overlapping window interface. (Courtesy of
Alan Kay.)

Kay and the PARC researchers never fully
developed a portable Dynabook, but they did
create the underlying technologies that paved
the way for personal and portable computing.
Kay left PARC in the early 1980s to move to
Los Angeles, take time off, and take organ
lessons. In 1983, he worked as chief scientist
for a year at Atari before joining Apple
Computer. Introduced in 1992, Apple’s Power-
Book turned the Macintosh into a notebook-
sized computer that, ultimately, turned Kay’s
Dynabook concept into a reality, except
PowerBooks did not weigh two pounds. While
at Apple, Kay assembled a team, including Dan
Ingalls, Ted Kaehler, John Maloney, and Scott
Wallace, to develop Squeak (http://
www.squeak.org). Squeak is an open-source-
code Smalltalk language that is available
through the Internet. One purpose of the
Squeak project is to create an educational
platform that can be programmed by children
and anyone not technically inclined.

In 1997, Kay moved his team to Disney’s
Imagineering division and continued to work
on the Squeak project. Five years later, Kay set
up Viewpoints Research Institute (http://
www.viewpointsresearch.org), a nonprofit or-
ganization dedicated to supporting media in
teaching and developing interactive construc-
tive educational environments for “children of
all ages.”

April-June 2007 29

30

Alan Kay: Transforming the Computer

Today, Smalltalk-80 is not designed to be
accessible to children. But, Kay’s Squeak e-toys
program based on Smalltalk is for children,
and Squeak is currently being used by children
in the classroom.

Kay’s largest contribution to computer
science is his commitment to turning the
computer into a dynamic personal medium
that supports creative thought. Additionally,
he continues to explore ways in which
computers can be accessible to children.

In 2004, the ACM honored Alan Kay with
the prestigious Turing Award for his pioneer
work on personal computers. That same year,
he also won the Charles Stark Draper Prize
from the National Academy of Engineering for
the development of the Alto, and the Kyoto
Prize laureate in advance technology from the
Inamori Foundation. Currently, Kay is the
president of Viewpoints Research Institute. His
deep interest in children and education still
remain a catalyst for his ideas and a source of
personal inspiration.

Acknowledgments

I would like to thank Bruce Austin and the
anonymous reviewers of this article for their
comments. In addition, I thank Alan Kay and
Kim Rose for their suggestions and help with
the development of this article.

References and notes

1. D. Shasha and C. Lazere, Out of Their Minds,
Springer-Verlag, 1995, pp. 38-54.

2.).C.R. Licklider and R. Taylor, ““The Computer as
a Communication Device,” Science and
Technology, April 1968. Also available at http://
www.ece.rice.edu/~dhj/History/licklider.pdf and
http://gatekeeper.dec.com/pub/DEC/SRC/
research-reports/abstracts/src-rr-061.html.

3. K. Nygaad and O. Dahl, ““The Development of the
Simula Languages,”” History of Programming
Languages, R.L. Wexelblat, ed., Academic Press,
1981, pp. 439-480.

4. A.C. Kay, "“Microelectronics and the Personal
Computer,” Scientific Am., Sept 1977, pp. 231-244.

5. S.B. Barnes, “Douglas Carl Engelbart: Developing
the Underlying Concepts for Contemporary
Computing,”” IEEE Annals of the History of
Computing, vol. 19, no. 3, 1997, pp. 16-26.

6. C.L. Baker, ““JOSS—]Johnniac Open-Shop System,"’
History of Programming Languages, R.L. Wexelblat,
ed., Academic Press, 1981, pp. 495-507.

7. S. Papert, Mindstorms: Children, Computers, and
Powerful Ideas, MIT Press, 1980.

8. A.C. Kay, “User Interface: A Personal View,” The
Art of Human-Computer Interface Design, B. Laurel,
ed., Addison-Wesley, 1990, pp. 191-207.

IEEE Annals of the History of Computing

9. A. Kay and A. Goldberg, ““Personal Dynamic
Media,”” Multimedia: From Wagner to Virtual
Reality, R. Packer, and K. Jordan, eds., W.W.
Norton & Co., 1977, pp. 173-184.

10. M.A. Hiltzik, Dealers of Lightning: Xerox PARC and
the Dawn of the Computer Age, HarperCollins,
1999, p. 122.

11. A. Kay, ““The Early History of Smalltalk,”
Programming Languages, T.J. Bergin, and R.G.
Gibson, eds., ACM Press, 1996, p. 551.

12. F. Rose, ““Pied Piper of the Computer,” The New
York Times, 8 Nov 1987, p. 60.

13. M. MclLuhan, The Gutenberg Galaxy, Univ.
Toronto Press, 1962.

14.). Bruner, Towards a Theory of Instruction, Harvard
Univ. Press, 1966.

15. A. Kay, “User Interface: A Personal View,” 1990,
p. 195.

16. A. Kay, ““User Interface: A Personal View,”” 1990,
p. 197.

17. A.C. Kay, "“The Early History of Smalltalk,” ACM
SIGPLAN Notices, vol. 38, no. 3, Mar 1993.

18. B.W. Lampson, “’Personal Distributed Computing:
The Alto and Ethernet Software,”” A History of
Personal Workstations, A. Goldberg, ed., Addison-
Wesley, 1988, pp. 293-333.

19. C.P. Thacker, “Personal Distributed Computing:
The Alto and Ethernet Hardware,”” A History of
Personal Workstations, A. Goldberg, ed., Addison-
Wesley, 1988, pp. 267-288.

20. Ibid., p. 273.

21. D.H.H. Ingalls, “The Smalltalk-76 Programming
System Design and Implementation,” Conf.
Record of the Fifth Ann. ACM Symp. on Principles of
Programming Languages, ACM Press, 1978, p. 2.
http://users.ipa.net/~dwighth/smalltalk/St76/
Smalltalk76ProgrammingSystem.html.

Susan B. Barnes is the associ-
ate director of the Social
Computing Lab and a profes-
sor in the Department of
Communication at the Ro-
chester Institute of Technolo-
gy. She is the author of Online
| Connections (Hampton, 2001)
and Computer-Mediated Communication: Human-to-
Human Communication Across the Internet (Allyn
& Bacon, 2003).

Readers may contact Barnes about this article at
sbbgpt@rit.edu.

For further information on this or any other
computing topic, please visit our Digital Library
at http://computer.org/publications/dlib.

