230 A. M. Turive [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. Turixe.
[Received 28 May, 1936.—Read 12 November, 1936.]

The ““computable” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers,
it is almost equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computahle
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.

In §§9, 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions.
the numbers =, ¢, etc. The computable numbers do not, however, include
all cefinable numbers, and an example is given of a definable number
which is not computable.

Although the class of computable numbers is so great, and in many
ways similar to the class of real numbers, it is nevertheless enumerable.
In § 8 I examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Gédelt. These results

t Godel, “Uber formal unentscheidhare Sitze der Principia Mathemetica und ver-
wandter Systeme, I”, Monatshefte Math. Phys., 38 (1931), 173-198.

1936.] ON COMPUTABLE NUMBERS, 231

have valuable applications. In particular, it is shown (§11) that the
Hilbertian Entscheidungsproblem can have no solution.

In a recent paper Alonzo Churchf has introduced an idea of *effective
calculability ”, which is equivalent to my ‘“computability ’, but is very
differently defined. Church also reaches similar conclusions about the
Entscheidungsproblemf. The proof of equivalence between ‘computa-
bility ” and ‘effective calculability ”’ is outlined in an appendix to the
present paper.

1. Computing machines.

We have said that the computable numbers are those whose decimals
are calculable by finite means. This requires rather more explicit
definition. No real attempt will be made to justify the definitions given
until we reach §9. For the present I shall only say that the justification
lies in the fact that the human memory is necessarily limited.

We may compare a man in the process of computing a real number to
machine which is only capable of a finite number of conditions ¢,, ¢s. ..., ¢
which will be called ““m-configurations”’. The machine is supplied with a
“tape’ (the analogue of paper) running through it, and divided into
sections (called ““squares’) each capable of bearing a ‘‘symbol”. At
any moment there is just one square, say the r-th, bearing the symbol &(+)
which is “in the machine’. We may call this square the ‘“scanned
square”’. The symbol on the scanned square may be called the ‘*scannec
symbol”’. The ‘“scanned symbol” is the only one of which the machine
is, so to speak, ‘“directly aware’’. However, by altering its m-configu-
ration the machine can effectively remember some of the symbols which
it has ‘“seen’ (scanned) previously. The possible behaviour of the
machine at any moment is determined by the m-configuration ¢, and the
scanned symbol &(r). This pairq,,, &(r) will be called the *“ configuration’ :
thus the configuration determines the possible behaviour of the machine.
In some of the configurations in which the scanned square is blank (i.e.
bears no symbol) the machine writes down a new symbol on the scanned
square: in other configurations it erases the scanned symbol. The
machine may also change the square which is being scanned, but only by
shifting it one place to right or left. In addition to any of these operations
the m-configuration may be changed. Some of the symbols written down

t Alonzo Church, ““ An unsolvable problem of elementary number theory”, American
J. of Math., 58 (1936), 345-363.

1 Alonzo Church, “A note on the Entscheidungsproblem™, J. of Symbolic Logic, 1
(1936), 40-41.

232 A. M. Torive [Nov. 12,

will form the sequence of figures which is the decimal of the real number
which is being computed. The others are just rough notes to ““ assist the
memory . It will only be these rough notes which will be liable to erasure.

Itis my contention that these operations include all those which are used
in the computation of a number. The defence of this contention will be
easier when the theory of the machines is familiar to the reader. In the
next section I therefore proceed with the development of the theory and
assume that it is understood what is meant by ‘“machine”, “tape”,
‘““scanned ’’, ete.

2. Definitions.

Automatic machines.

If at each stage the motion of a machine (in the sense of §1)is completely
determined by the configuration, we shall call the machine an ‘“auto-
matic machine” (or g-machine).

For some purposes we might use machines (choice machines or
c-machines) whose motion is only partially determined by the configuration
(hence the use of the word possible”” in §1). When such a machine
reaches one of these ambiguous configurations, it cannot go on until some
arbitrary choice has been made by an external operator. This would be the
case if we were using machines to deal with axiomatic systems. In this

paper I deal only with autcmatic machines, and will therefore often omit
the prefix a-.

Computing machines.

If an @-machine prints two kinds of symbols, of which the first kind
(called figures) consists entirely of 0 and 1 (the others being called symbols of
the second kind), then the machine will be called a computing machine.
If the machine is supplied with a blank tape and set in motion, starting
from the correct initial m-configuration, the subsequence of the symbols
printed by it which are of the first kind will be called the sequence computed
by the machine. The real number whose expression as a binary decimal is
obtained by prefacing this sequence by a decimal point is called the
number computed by the machine.

At any stage of the motion of the machine, the number of the scanned
square, the complete sequence of all symbols on the tape, and the
m-configuration will be said to describe the complete configuration at that
stage. The changes of the machine and tape between successive complete
configurations will be called the moves of the machine.

1936.] ON COMPUTABLE NUMBERS. 233

Crircular and circle-free machines.

If a computing machine never writes down more than a finite number
of symbols of the first kind, it will be called circular. Otherwise it is said to
be circle-free.

A machine will be circular if it reaches a configuration from which therce
is no possible move, or if it goes on moving, and possibly printing symbols
of the second kind, but cannot print any more symbols of the first kind.
The significance of the term “circular” will be explained in §8.

Computable sequences and numbers.

A sequence is said to be computable if it can be computed by a civcle-free
machine. A number is computable if it differs by an integer from the
number computed by a circle-free machine.

We shall avoid confusion by speaking more often of computable
sequences than of computable numbers.

3. Examples of computing machines.

I. A machine can be constructed to compute the sequence 010101....
The machine is to have the four m-configurations <067, ¢¢*, <, ¢
and is capable of printing “0”” and “1”’. The behaviour of the machine is
described in the following table in which ¢ B’ means “ the machine moves
so that it scans the square immediately on the right of the one it was
scanning previously ”’. Similarly for < L. <K’ means ‘ the scanned
symbol is erased” and P’ stands for “prints”. This table (and all
succeeding tables of the same kind) is to be understood to mean that for
a configuration described in the first two columns the operations in the
third column are carried out successively, and the machine then goes over
into the m-configuration described in the last column. When the second
column is left blank, it is understood that the behaviour of the third and
fourth columns applies for any symbol and for no symbol. The machine
starts in the m-configuration 6 with a blank tape.

Configuration Behaviour
m-config. symbol operations final m-config.
b None PO, R ¢
¢ None R ¢
¢ None Pl1, R t

t None R b

234 A. M. TurinNeg [Nov. 12,

If (contrary to the description in § 1) we allow the letters L, R to appear
more than once in the operations column we can simplify the table
considerably.

m-config. symbol operations final m-config.
None PO b
b 0 R, R, P1 b
1 R, R, PO b

II. As a slightly more difficult example we can construct a machine to
compute the sequence 001011011101111011111.... The machine is to
be capable of five m-configurations, viz. “o”, “q”, “p”, “f”, “b" and of
printing <97, “x”, «0”, «“1”. The first three symbols on the tape will
be <000 ; the other figures follow on alternate squares. On the inter-
mediate squares we never print anything but “2”’. These letters serve to
“keep the place” for us and are erased when we have finished with them.
We also arrange that in the sequence of figures on alternate squares there
shall be no blanks.

Configuration Behaviour
m-config. symbol operations final
m-config.

b Po, R, Po, R, PO, R, R, PO, L, L 0
(1 R,Px,L,L,L 0

0 1[o .
Any (0 or 1) R, R q

! {None Pl, L p
x E R q

b {9 R f
None L, L p

Any R, R f

{ None PO,L, L 0

To illustrate the working of this machine a table is given below of the
first few complete configurations. These complete configurations are
described by writing down the sequence of symbols which are on the tape,

-

1936.] ON COMPUTABLE NUMBERS. 235

with the m-configuration written below the scanned symbol. The
successive complete configurations are separated by colons.

19090 0:000 0:990 0:900 O 9920 0 1:
b 0 q q q p
900 0 1:990 0 1:980 0 1l:2920 0 1:
P p f f
2990 0 l:990 0 1 2920 0 1 0:
f f 0

990 0 1=20:....
0
This table could also be written in the form
b:ooo® O0:00q0 0: .., (c

in which a space has been made on the left of the scanned symbol and the
m-configuration written in this space. This form is less easy to follow, but
we shall make use of it later for theoretical purposes.

The convention of writing the figures only on alternate squares is very
useful : Ishall always make use ofit. I shall call the one sequence of alter-
nate squares F-squares and the other sequence E-squares. The syuihols on
E-squares will be liable to erasure. The symbols on F-squares form a
continuous sequence. There are no blanks until the end isreached. There
is no need to have more than one E-square between each pair of F-squares:
an apparent need of more E-squares can be satisfied by having a sufficiently
rich variety of symbols capable of being printed on E-squares. If a
symbol Bis on an F-square S and a symbol a is on the E-square next on the
right of 8, then § and B will be said to be marked with a. The
process of printing this a will be called marking 8 (or §) with a.

4. Abbreviated tables.

There are certain types of process used by nearly all machines, and
these, in some machines, are used in many connections. These processes
include copying down sequences of symbols, comparing sequences, erasing
all symbols of a given form, etc. Where such processes are concerned we
can abbreviate the tables for the m-configurations considerably by the use
of “skeleton tables”. In skeleton tables there appear capital German
letters and small Greek letters. These are of the nature of ““ variables’'.
By replacing each capital German letter throughout by an m-configuration

236 A. M. TuriNag [Nov. 12,

and each small Greek letter by a symbol, we obtain the table for an
m-configuration.

The skeleton tables are to be regarded as nothing but abbreviations :
they are not essential. So long as the reader understands how to obtain
the complete tables from the skeleton tables, there is no need to give any
exact definitions in this connection.

Let us consider an example:

m-config. Symbol Behaviowr Final
m-config.

L (€ %, aq) From the m-configuration
f(€, B, a) the machine finds the
symbol of form a which is far-
[a ¢ thest to the left (the “first a”)
(G, 9¥,a) < not a £,(G,®,q) and the m-configuration then

becomes €. If there is no «
L None B 12(€,%,a) then the m-configuration be-
[a e comes 9B.

I
'(C,%,a)
[I]Ot 9 JJ i(C‘ 3 ?37 a)

=

f2(67-<3:a) 1 not a R fl(@:: %: 0.)
(None R B

If we were to replace € throughout by g (say), B by r, and o by %, we
should have a complete table for the m-configuration f(q, ¢,). fis called
an ‘““m-configuration function” or *m-function’.

The only expressions which are admissible for substitution in an
m-tfunction are the m-configurations and symbols of the machine. These
have to be enumerated more or less explicitly : they may include expressions
such as p(¢,) ; indeed they must if there are any m-functions used at all.
1f we did not insist on this explicit emumeration, but simply stated that
the machine had certain m-configurations (enumerated) and all m-configu-
rations obtainable by substitution of m-configurations in certain m-func-
tions, we should usually get an infinity of m-configurations; e.g., we might
say that the machine was to have the m-configuration q and all m-configu-
rations obtainable by substituting an m-configuration for €in p(€). Then

it would have 4, p(q), p(p(q)), p(p(p(q))), ... as m-configurations.

Our interpretation rule then is this. We are given the names of the
m-configurations of the machine, mostly expressed in terms of m-functions.
We are also given skeleton tables. All we want is the complete table for
the m-configurations of the machine. This is obtained by repeated
substitution in the skeleton tables.

1936.] OX COMPUTABLE NUMBERS. 237

Further examples.

(In the explanations the symbol ““—"" is used to signify *“ the machine
goes into the m-configaration. . . .”)

e(€, D, a) f(eI(Q, B, a), B, a) From ¢(C€, 9B, «) the first a is
¢(6,B,0) E G lea;s;d and — €. If there is no
e(B, a) c(e(%, a), B, a) From ¢(B, a) all letters a are

erased and — 3.

The last example seems somewhat more difficult to interpret than
most. Let us suppose that in the list of m-configurations of some machine
there appears ¢(b, x) (=gq, say). The table is

c(b, x) c(c(b, x), b, ’C)
or q e(q, &,).

Or, in greater detail:

q c(q, b, 2)
e(q, b, @) f(cl(q, b, a), 0, ::;)
¢, (q, b, @) E q.

In this we could replace ¢;(q, b,) by q” and then give the table for f (with
the right substitutions) and eventually reach a table in which no
m-functions appeared.

pe(€, B) f(pcl(G,B), @,9) From pe (€, B) the machine

Any R.R 3 prints B at the end of the
T pe(C B) sequence of symbols and — C.

pes (€, B) {

None PS ¢

[(€) L € From f'(C, 9, a) it does the
¢(G) R G same as for (€, B, a) but
' moves to the left before — C.

(G, 3, a) £(1(6), 3, a)

f(€, B, a) f(x(C), B, o)
(€, B, a) f(e(€), B, a) ¢(€, B, a). The machine
¢,(6) B pe(6, B) writes at the end the first sym-

bol marked a and — G.

238 A. M. TurmvGg [Nov. 12,

The last line stands for the totality of lines obtainable from it by
replacing B by any symbol which may occur on the tape of the machine
concerned.

«(€,3,a) c(e(@, B, a),.‘B,a) ce(B, a). The machine
copies down in order at the

cc(3, a) ce (ce(, a), 3, a) end all symbols marked a
and erases the letters a; —93.

1(G, DB, a, B) f(re)(€, %, 0,8),9,a) t¢(€, B, a, B). The ma-
o chine replaces the first a by
(€., 0,8) E, PP ¢ Band - € > if there is 1o a.
(3, a, B) v (rc(.‘B, a,), 9, a, /3) r¢(%, a, B). The machine re-
placesallletters a by B; —9.

o {C, B, a) ¢ (YC((‘:, B, a,a), B, a) (P, o) differs from

. ce{B, a) only in that the

¢+(T, a) e (“(75: a),ve(D, ¢, a), ‘1) letters a are not erased. The

m-configuration (B, a) is
taken up when no letters
“@” are on the tape.

2(C 9, € a, B (e (G %), FA € B), o)
(€, 2, 8) ¥ f (cpa(€, %, 3), %, B)
cuy |7 ¢
fp:}(SR
?) 'Lnot ¥ .

The first symbol marked « and the first marked g are compared. If
there is neither o nor 8, - €. If there are both and the symbols are alike,
— €. Otherwise = .

pe(G, U, G, a, B) mQM@@mﬁwy%@mm

cpe(€, U, €, o, B) differs from ¢p(€, U, €, o, B) in that in the case when
there is similarity the first « and 8 are erased.

epe(¥, €, a, B) cpe (cpe(2, €, 0,), U, €, a, B).

cpe(U, €, a, B). The sequence of symbols marked a is compared with
the sequence marked 8. — € if they are similar. Otherwise - . Some
of the symbols « and B are erased.

1936.] ON COMPUTABLE NUMBERS. 239
Any R q(€) q(€, a). The machine
9(€) { finds the last symbol of
None R %(®) form a. —@.
Any R q(€)
¢
u(® None €
A(€,a) 9 (a(€a)
a e
€,
(& e) not a L 91(€, a)
p¢o (€, a, B) pe (pe(@, B, a) peo(€, a, B). The machine
prints a B at the end.
¢ex(B, a, B) e ee(D, B), o) ce5(B,a,B,y). The mach-
ine copies down at the end
ce3(%B, a, B, 7) ce (ceg(%, B:¥)s a) first the symbols marked a,
then those marked B, and
finally those marked y; it
erases the symbols a, S, y.
9 R e, (€) From ¢(€) the marks are
e(¢) -
(€) Noto L ¢(6) erased from all marked sym
bols. —G.
(Any R,E,R e, (€)
e (€)
None ¢

5. Enumeration of computable sequences.

A computable sequence vy is determined by a description of a machine

which computes vy.

Thus the sequence 001011011101111...

is determined

by the table on p. 234, and, in fact, any computable sequence is capable of
being described in terms of such a table.
It will be useful to put these tables into a kind of standard form. In the

first place let us suppose that the table is given in the same form as the first
table, forexample, I on p. 233. Thatis tosay, that the entry in the operations
columnisalwaysofoneoftheforms E: E, R: E,L: Pa: Pa,R: Pa,L:R:L:
or no entry at all. The table can always be put into this form by intro-
ducing more m-configurations.
rations, calling them g,,
always to be called g,.

Now let us give numbers to the m-configu-
..., qp, a8 in §1. The initial m-configuration is
We also give numbers to the symbols 8,,...., S

m

240 A. M. Turve [Nov. 12,

and, in particular, blank = 8y, 0=8;, 1 =2S8,. The lines of the table are
now of form

Final
m-config. Symbol Operations m-config.
4 8, P S.k’ L Im (N,)
9 8, PS,, R Im (NV2)
¢ s, P, Tn (V)
Lines such as
g S; E, E D
are to be written as
% $; PS8y, R Im
and lines such as
9 8, R Im
to be written as
g S; PS,, R O

In this way we reduce each line of the table to a line of one of the forms
(Nl): (N2)7 (NS)

From each line of form (IV,) let us form an expression ¢;8,S,, Lg,,;
from each line of form (N,) we form an expression ¢;8;8;Rq,;
and from each line of form (V) we form an expression ¢;S; S, N q,,.

Let us write down all expressions so formed from the table for the
machine and separate them by semi-colons. In this way we obtain a
complete description of the machine. In this description we shall replace
g; by the letter «“ D’ followed by the letter ‘ 4 *’ repeated ¢ times, and S; by
«“D* followed by “C” repeated j times. This new description of the
machine may be called the standard description (S.D). It is made up
entirely from the letters <4, «C”, “D”, “L”, “R”, “N”, and from

[T
b

If finally we replace “A” by “1”, “C” by “2”, “D” by “3”, “L”
by “4”, “R” by “5”, “N” by “6”, and “3” by “7” we shall have a
description of the machine in the form of an arabic numeral. The integer
represented by this numeral may be called a description number (D.N) of
the machine. The D.N determine the S.D and the structure of the

1936.] ON COMPUTABLE NUMBERS. 241

machine uniquely. The machine whose D.N is » may be described as
A(n).

To each computable sequence there corresponds at least one description
number, while to no description number does there correspond more than
one computable sequence. The computable sequences and numbers are
therefore enumerable.

Let us find a description number for the machine I of §3. When we
rename the m-configurations its table becomes:

¢ S, P8, R qs
g, S, PS,, R qs
3 Sy PS,, R 94
q, S, PS,, R 4

Other tables could be obtained by adding irrelevant lines such as
¢ S PS,, R A
Our first standard form would be
918081 Bqy; 428080 Rqs; 938082 Bgy; 948080 Beys-
The standard description is
DADDCRDAA;DAADDRDAAA;
DAAADDCCRDAAAA;DAAAADDRDA ;
A description number is
31332531173113353111731113322531111731111335317
and so is
3133253117311335311173111332253111173111133531731323253117

A number which is a description number of a circle-free machine will be
called a satisfactory number. In §8itis shown that there can be no general
process for determining whether a given number is satisfactory or not.

6. The universal computing machine.

It is possible to invent a single machine which can be used to compute
any computable sequence. If this machine Al is supplied with a tape on
the beginning of which is written the S.D of some computing machine M,

8ER. 2. VOL. 42. No. 2144, R

242 A. M. Turing [Nov. 12,

then W will compute the same sequence as Al. In this section I explain
in outline the behaviour of the machine. The next section is devoted to
giving the complete table for W.

Let us first suppose that we have a machine AL’ which will write down on
the F-squares the successive complete configurations of Al. These might
be expressed in the same form as on p. 235, using the second description,
(C), with all symbols on one line. Or, better, we could transform this
description (as in §5) by replacing each m-configuration by D’ followed
by A repeated the appropriate number of times, and by replacing each
symbol by “D” followed by ‘“ C’ repeated the appropriate number of
times. The numbers ofletters “ 4 ’’ and ¢ O’ are to agree with the numbers
chosen in §5, so that, in particular, “0” is replaced by “DC”, “1” by
“DCC”, and the blanks by “D”. These substitutions are to be made
after the complete configurations have been put together, as in (C). Diffi-
culties arise if we do the substitution first. In each complete configura-
tion the blanks would all have to be replaced by ““ D ”’, so that the complete
configuration would not be expressed as a finite sequence of symbols.

Ifin the description of the machine II of § 3 we replace <o’ by “DAA4 ”,
“9” by “DCCC”, “q” by “DAAA”, then the sequence (C) becomes:

DA :DCCCDCCCDAADCDDC :DCCCDCCCDAAADCDDC: ... (C))

(This is the sequence of symbols on F-squares.)

It is not difficult to see that if .l{. can be constructed, then so can Al'.
The manner of operation of A\l could be made to depend on having the rules
of operation (i.e., the 8.D) of .\l written somewhere within itself (s.e. within
AL); each step could be carried out by referring to these rules. We have
only to regard the rules as being capable of being taken out and ex-
changed for others and we have something very akin to the universal
machine.

One thing is lacking : at present the machine Al prints no figures. We
may correct this by printing between each successive pair of complete
configurations the figures which appear in the new configuration but not
in the old. Then (C,) becomes

DDA:0:0:DCCCDCCCDAADCDDC:DCCC.... (Cy)

It is not altogether obvious that the E-squares leave enough room for
the necessary ‘‘rough work ’’, but this is, in fact, the case.

The sequences of letters between the colons in expressions such as
(C,) may be used as standard descriptions of the complete configurations.
‘When the letters are replaced by figures, as in §5, we shall have a numerical

1936.] ON COMPUTABLE NUMBERS. 243

description of the complete configuration, which may be called its descrip-
tion number.

7. Detailed description of the universal machine.

A table is given below of the behaviour of this universal machine. The
m-configurations of which the machine is capable are all those occurring in
the first and last columns of the table, together with all those which occur
when we write out the unabbreviated tables of those which appear in the
table in the form of m-functions. E.g., ¢(anf) appears in the table and is an
m-function. Its unabbreviated table is (see p. 239)

) R ¢, (anf)
¢lanf) {not ° L e(anf)

Any R, E, R e, (anf)
ea(anf) { None anf

Consequently ¢, (anf) is an m-configuration of (.

When U is ready to start work the tape running through it bears on it
the symbol o on an F-square and again o on the next E-square; after this,
on F-squares only, comes the S.D of the machine followed by a double
colon ¢::” (a single symbol, on an F-square). The S.D consists of a
number of instructions, separated by semi-colons.

Each instruction consists of five consecutive parts

(i) <D followed by a sequence of letters 4 ”’. This describes the
relevant m-configuration.

(i1) <D followed by a sequence of letters < C . This describes the
scanned symbol.

(ii) «“D” followed by another sequence of letters “C”. This
describes the symbol into which the scanned symbol is to be changed.

(iv) “L”, “R”, or ““N 7, describing whether the machine is to move
to left, right, or not at all.

(v) «“D” followed by a sequence of letters <“4”. This describes the
final m-configuration.

The machine 1t is to be capable of printing “4 7, «C”, “D”, “0”,
L1V, ey, oy s g oy« The 8.D is formed from «;”,
.uA ”, 1] C”’ uD“, (zL”, uR ”’ c(NH‘

R2

244

Subsidiary skeleton table.

Not4 R,R con(€, a)

con(€, a)
A L,Po,R con (€, a)
A R, Pa, B cony(€, a)

cony (G, @)
D R,Pa, B cony(€,a)
C R, Pa, B cony(€, a)

cony (G, a)
Not C R,R ¢

The table for (.

b f(bls Bla ::)

b, R,R,P:,R, R,PD,R,R,PA anf
anf g(anfy, 2)
anf, con(fom, y)
; R, Pz, L con(fmp, %)
fom z L, L fom
not z nor ; L fom
tay cpe(c(Eom, z, y), $im, z, y)

A. M. TuriNg

[Nov. 12,

con(€, a). Starting from
an F-square, S say, the se-
quence C of symbols describ-
ing a configuration closest on
the right of S is marked out
with letters a. —€.

con(€,). In the final con-
figuration the machine 1is
scanning the square which is
four squares to the right of the
last square of C. C is left
unmarked.

b. The machine prints
:DA on the F-squares after
:: —>anf.

anf. The machine marks
the configuration in the last
complete configuration with
y. —>Fom.

fom. The machine finds
the last semi-colon not
marked with z. It marks
this semi-colon with 2z and
the configuration following
it with .

fmp. The machine com-
pares the sequences marked
xz and y. It erases all letters
xz and y. — sim if they are
alike. Otherwise — fom.

anf. Taking the long view, the last instruction relevant to the last
configuration is found. It can be recognised afterwards as the instruction

following the last semi-colon marked z.

—8im.

1936.]

sim

8im,

‘mé

mb,y

mé,

méy

mé,

mi;

3h

8h,

8,

8

8y

8hg

{not A
8imy
A

not A

not 4

not :

ON COMPUTABLE NUMBERS. 245

f'(8imy, 8imy, 2)

con (vimy,)

L, Py

R, R

gimg

R,Pu,R,R,R 8im,

e(mt, z)

L,Py,R,R,R sim,

g(mt, 1)

mé,

L, L L, L méi,
R,Px, L, L, L mé,

mé,

R, Px, L, L, L mt,
R, Pv,L,L, L mt,

own

R, Pw, R
P:

L, L, L

mf,

(t(tmep),)
mf;
8h
f(8hy, indt, u)

8hy

R,R,R,E sb,

R, R

R, R

ingt
80,
inst
8D
pey(inst, 0, :)
inst
pey(inst, 1, :)

8im. The machine marks out
the instructions. That part of
the instructions which refers to
operations to be carried out is
marked with %, and the final m-
configuration with y. The let-
ters z are erased.

mf. The last complete con-
figuration is marked out into
four sections. The configura-
ration is left unmarked. The
symbol directly preceding it is
marked with z. The remainder
of the complete configuration

is divided into two parts, of
which the first is marked with
v and the last with w. A colonis
printed after the whole. "— 8.

$f. Theinstructions (marked
%) are examined. If it is found
that they involve “Print 0 or
“Print 1°, then 0: or 1: is
printed at the end.

246 A. M. TvriNG [Nov. 12,

inst g([(ingtl)’ u) inst. The next complete
configuration is written down,

inst; @« RE inst, (a) carrying out the marked instruc-

inst, (L) cey (09, v, Y, %, %, W) tions. The letters u, v, w, z, ¥

. are erased. —anf.

inst, (R) ces(00, v, T, u, Y, W)

inst; (V) ecs(ov, v, , Y, U, W)

0p e(anf)

8. Application of the diagonal process.

It may be thought that arguments which prove that the real numbers
are not enumerable would also prove that the computable numbers and
sequences cannot be enumerable*. It might, for instance, be thought
that the limit of a sequence of computable numbers must be computable.
This is clearly only true if the sequence of computable numbers is defined
by some rule.

Or we might apply the diagonal process. “ If the computable sequences
are enumerable, let o, be the n-th computable sequence, and let ¢, (m) be
the m-th figure in a,. Let B be the sequence with 1—¢,(n) as its n-th
figure. Since B is computable, there exists a number K such that
1—¢,(n)=¢r(n) all n. Putting n= K, we have 1=2¢x(K), t.e. 1 is
even. This is impossible. The computable sequences are therefore not
enumerable .

The fallacy in this argument lies in the assumption that 8 is computable.
It would be true if we could enumerate the computable sequences by finite
means, but the problem of enumerating computable sequences is equivalent
to the problem of finding out whether a given number is the D.N of a
circle-free machine, and we have no general process for doing this in a finite
number of steps. In fact, by applying the diagonal process argument
correctly, we can show that there cannot be any such general process.

The simplest and most direct proof of this is by showing that, if this
general process exists, then there is a machine which computes 8. This
proof, although perfectly sound, has the disadvantage that it may leave
the reader with a feeling that ¢ there must be something wrong”’. The
proof which I shall give has not this disadvantage, and gives a certain
insight into the significance of the idea “circle-free”’. It depends not on
constructing B, but on constructing f’, whose n-th figure is ¢, (n).

* Cf. Hobson, Theory of functions of a real variable (2nd ed., 1921), 87, 88.

1936.] ON COMPUTABLE NUMBERS. 247

Let us suppose that there is such a process; that is to say, that we can
invent a machine © which, when supplied with the S.D of any computing
machine A will test this 8.D and if Al is circular will mark the 8.D with the
symbol “w%”” and if it is circle-free will mark it with “s”. By combining
the machines © and U we could construct a machine 3! to compute the
sequence 8. The machine © may require a tape. We may suppose that
it uses the E-squares beyond all symbols on F-squares, and that when it
has reached its verdict all the rough work done by © is erased.

The machine Ji has its motion divided into sections. In the first N—1
sections, among other things, the integers 1, 2, ..., N—1 have been written
down and tested by the machine ©. A certain number, say R(N—1), of
them have been found to be the D.N’s of circle-free machines. Inthe N-th
section the machine 1 tests the number N. If N is satisfactory, .e., if it
is the D.N of a circle-free machine, then R(N)= 1+ R(N —1) and the first
R(N) figures of the sequence of which a DN is N are calculated. The
R(N)-th figure of this sequence is written down as one of the figures of the
sequence ' computed by J+. If Nisnot satisfactory, then R(N)= R(N-—1)
and the machine goes on to the (¥ - 1)-th section of its motion.

From the construction of JI. we can see that J!. is circle-free. Each
section of the motion of Ji comes to an end after a finite number of steps.
For, by our assumption about Q., the decision as to whether N is satisfactory
is reached in a finite number of steps. If N is not satisfactory, then the
N-th section is finished. If N is satisfactory, this means that the machine
AL(N) whose D.N is N is circle-free, and therefore its R(N)-th figure can be
calculated in a finite number of steps. When this figure has been calculated
and written down as the E(N)-th figure of 8, the N-th section is finished.
Hence 11 is circle-free.

Now let K be the D.N of yl. What does 1l do in the K-th section of
its motion? It must test whether K is satisfactory, giving a verdict s’
or “u”’. Since K is the D.N of il and since }\| is circle-free, the verdict
cannot be “%”’. On the other hand the verdict cannot be “s””. For if it
were, then in the K-th section of its motion J| would be bound to compute
the first R(K—1)+1= R(K) figures of the sequence computed by the
machine with K as its D.N and to write down the R(K)-th as a figure of the
sequence computed by 31. The computation of the first R(K)—1 figures
would be carried out all right, but the instructions for calculating the
R(K)-th would amount to ¢calculate the first R(K) figures computed by
H and write down the R(K)-th”’. This R(K)-th figure would never be
found. I.e., }}is circular, contrary both to what we have found in the last
paragraph and to the verdict “s’’. Thus both verdicts are impossible
and we conclude that there can be no machine Q.

248 A. M. Turine [Nov. 12,

We can show further that there can be no machine & which, when
supplied with the 8.D of an arbitrary machine A\, will determine whether .\l
ever prints a given symbol (0 say).

We will first show that, if there is a machine £, then there is a general
process for determining whether a given machine .\l prints 0 infinitely
often. Let ., be a machine which prints the same sequence as .11, except
that in the position where the first 0 printed by .|l stands, .|, prints 0.
1, is to have the first two symbols 0 replaced by 0, and so on. Thus, if . Il
were to print

A4B4014A4AB00104B...,

then .11, wonld print

AB40144B00104B...
and .1, would print

ABAVIAABO010AB....

Now let 7 be a machine which, when supplied with the S.D of . ||, will
write down successively the S.D of - 1i, of .1}, of .ll,, ... (there is such a
machine). We combine I with { and obtain a new machine, . In the
motion of ¢, first 7 is used to write down the S.D of -, and then { tests
it.: 0 :is written if it is found that . | never prints 0; then 7 writes the S.D
of .11, and this is tested, : 0: being printed if and only if . {, never prints 0,
and so on. Now let us test {, with {. Ifit is found that (; never prints 0,
then .1l prints 0 infinitely often; if ; prints 0 sometimes, then .1l does not
print 0 infinitely often.

Similarly there is a general process for determining whether . prints 1
infinitely often. By a combination of these processes we have a process
for determining whether . il prints an infinity of figures, 7.e. we have a process
for determining whether .U is circle-free. There can therefore be no
machine <.

"The expression ‘‘there is a general process for determining ...”” has
been used throughout this section as equivalent to ‘there is a machine
which will determine This usage can be justified if and only if we
can justify our definition of “computable’’. For each of these ““general
process”’ problems can be expressed as a problem concerning a general
process for determining whether a given integer » has a property G(n) [e.g.
(¢(n) might mean “= is satisfactory ”’ or ¢ is the Godel representation of
a provable formula’], and this is equivalent to computing a number
whose n-th figure is 1 if G (n) is true and 0 if it is false.

1936.] ON COMPUTABLE NUMBERS. 249

9. The extent of the computable numbers.

No attempt has yet been made to show that the “computable ’’ numbers
include all numbers which would naturally be regarded as computable. All
arguments which can be given are bound to be, fundamentally, appeals
to intuition, and for this reason rather unsatisfactory mathematically.
The real question at issue is < What are the possible processes which can he
carried out in computing a number?”’

The arguments which I shall use are of three kinds.

(@) A direct appeal to intuition.

(b) A proof of the equivalence of two definitions (in case the new
definition has a greater intuitive appeal).

(c) Giving examples of large classes of numbers which ave
computable.

Once it is granted that computable numbers are all “computable ",
several other propositions of the same character follow. In particular, it
follows that, if there is a general process for determining whether a formula
of the Hilbert function calculus is provable, then the determination can he
carried out by a machine.

I. [Type (¢)]. This argument is only an elaboration of the ideas of § 1.

Computing is normally done by writing certain symbois on paper. We
may suppose this paper is divided into squares like a child’s arithmetic book.
In elementary arithmetic the two-dimensional character of the paper is
sometimes used. But such a use is always avoidable, and I think that it
will be agreed that the two-dimensional character of paper is no essential
of computation. I assume then that the computation is carried out on
one-dimensional paper, ¢.e. on a tape divided into squares. I shall also
suppose that the number of symbols which may be printed is finite. If we
were to allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extent{. The effect of this restriction of the number
of symbols is not very serious. It is always possible to use sequences ot
symbols in the place of single symbols. Thus an Arabic numeral such as

t If we regard a symbol as literally printed on a square we may suppose that the square
is0<a<1, 0<y<1. The symbol is defined as a set of points in this square, viz. the
set occupied by printer’s ink. If these sets are restricted to be measurable, we can define
the ‘“distance *’ between two symbols as the cost of transforming one symbol into the
other if the cost of moving unit area of printer’s ink unit distance is unity, and there is an
infinite supply of ink at = 2, y = 0. With this topology the symbols form a condition-
ally compact space.

Robin Boast

250 A. M. TuriNg [Nov. 12,

17 or 999999999999999 is normally treated as a single symbol. Similarly
in any European language words are treated as single symbols (Chinese,
however, attempts to have an enumerable infinity of symbols). The
differences from our point of view between the single and compound symbols
is that the compound symbols, if they are too lengthy, cannot be observed
at one glance. This is in accordance with experience. We cannot tell at
a glance whether 9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his ¢ state of mind ’ at that moment.
We may suppose that there is a bound B to the number of symbols or
squares which the computer can observe at one moment. If he wishes to
observe more, he must use successive observations. We will also suppose
that the number of states of mind which need be taken into account is finite.
The reasons for this are of the same character as those which restrict the
number of symbols. If we admitted an infinity of states of mind, some of
them will be ‘“arbitrarily close ’ and will be confused. Again, therestriction
is not one which seriously affects computation, since the use of more compli-
cated states of mind can be avoided by writing more symbols on the tape.

Let us imagine the operations performed by the computer to be split up
into “simple operations’’ which are so elementary that it is not easy to
imagine them further divided. Every such operation consists of some change
of the physical system consisting of the computer and his tape. We know
the state of the system if we know the sequence of symbols on the tape,
which of these are observed by the computer (possibly with a special
order), and the state of mind of the computer. We may suppose that in a
simple operation not more than one symbol is altered. Any other changes

can be split up into simple changes of this kind. The situation in regard to
the squares whose symbols may be altered in this way is the same as in

regard to the observed squares. We may, therefore, without loss of
generality, assume that the squares whose symbols are changed are always
“observed” squares.

Besides these changes of symbols, the simple operations must include
changes of distribution of observed squares. The new observed squares
must be immediately recognisable by the computer. I thinkitisreasonable
to suppose that they can only be squares whose distance from the closest
of the immediately previously observed squares does not exceed a certain
fixed amount. Let us say that each of the new observed squares is within
L squares of an immediately previously observed square.

In connection with “immediate recognisability ”’, it may be thought
that there are other kinds of square which are immediately recognisable.
In particular, squares marked by special symbols might be taken as imme-

1936.] ON COMPUTABLE NUMBERS. 251

diately recognisable. Now if these squares are marked only by single
symbols there can be only a finite number of them, and we should not upset
our theory by adjoining these marked squares to the observed squares. If,
on the other hand, they are marked by a sequence of symbols, we
cannot regard the process of recognition as a simple process. This is a
fundamental point and should be illustrated. In most mathematical
papers the equations and theorems are numbered. Normally the numbers
do not go beyond (say) 1000. It is, therefore, possible to recognise a
theorem at a glance by its number. But if the paper was very long, we
might reach Theorem 157767733443477 ; then, further on in the paper, we
might find ‘... hence (applying Theorem 157767733443477) we have ..."".
In order to make sure which was the relevant theorem we should have to
compare the two numbers figure by figure, possibly ticking the figures off
in pencil to make sure of their not being counted twice. Ifin spite of this
it is still thought that there are other ¢ immediately recognisable’ squares.
it does not upset my contention so long as these squares can be found by
some process of which my type of machine is capable. This idea is
developed in III below.
The simple operations must therefore include:

(@) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square
within L squares of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of
state of mind. The most general single operation must therefore be taken
to be one of the following:

(4) A possible change (@) of symbol together with a possible
change of state of mind.

(B) A possible change (b) of observed squares, together with a
possible change of state of mind.

The operation actually performed is determined, as has been suggested
on p. 250, by the state of mind of the computer and the ohserved symbols.
In particular, they determine the state of mind of the computer after the
operation is carried out.

We may now construct a machine to do the work of this computer. To
each state of mind of the computer corresponds an “m-configuration” of
the machine. The machine scans B squares corresponding to the B squares
observed by the computer. Inanymove the machine canchange asymbol
on a scanned square or can change any one of the scanned squares to another
square distant not more than L squares from one of the other scanned

252 A. M. Turing [Nov. 12,

squares. The move which is done, and the succeeding configuration, are
determined by the scanned symbol and the m-configuration. The
machines just described do not differ very essentially from computing
machines as defined in § 2, and corresponding to any machine of this type
a computing machine can be constructed to compute the same sequence,
that is to say the sequence computed by the computer.

II. [Type (b)].

If the notation of the Hilbert functional calculust is modified so as to
be systematic, and so as to involve only a finite number of symbols, it
becomes possible to construct an automatic machine ¥, which will find
all the provable formulae of the calculus§.

Now let a be a sequence, and let us denote by G,(x) the proposition
“The z-th figure of @ is 1 ”°, so that” — G, (x) means ““ The z-th figure of a
is 0. Suppose further that we can find a set of properties which define
the sequence a and which can be expressed in terms of G,(x) and of the
propositional functions N (z) meaning ‘2 is a non-negative integer” and
F(z, y) meaning “y=2x+41". When we join all these formulae together
conjunctively, we shall have a formula, % say, which defines a. The terms
of % must include the necessary parts of the Peano axioms, viz.,

(5N @) & @) (N @)~ (39 P, 9) & (F,9)~N),

which we will abbreviate to P.

When we say “% defines a”, we mean that —% is not a provable
formula, and also that, for each n, one of the following formulae (A,) or
(B,) is provable.

?

A& F Gu(u(")), (‘L‘n)‘T
Y & FO > (— G, (um)), (B,),

where F stands for F(uw, u') & F(w', ") & ... F(u®D, u™),

t The expression ¢ the functional calculus” is used throughout to mean the restricted
Hilbert functional calculus.

+ It is most natural to construct first a choice machine (§2) to do this. But it is
then easy to construct the required automatic machine. We can suppose that the choices
are always choices between two possibilities 0 and 1. Each proof will then be determined
by a sequence of choices 4,, %y, ..., %, (4, =0 o0r 1, ;=0 or 1, ..., 3,= 0 or 1), and hence
the number 2*+7, 20-14-4, 2¢—24 | 44, completely determines the proof. The automatic
machine carries out successively proof 1, proof 2, proof 3,

§ The author has found a description of such a machine.

Il The negation sign is written before an expression and not over it.

41 A sequence of r primes is denoted by '™,

1936.] ON COMPUTABLE NUMBERS. 253

I say that a is then a computable sequence : a machine ¥, to compute
a can be obtained by a fairly simple modification of .

We divide the motion of ¥, into sections. The n-th section is devoted
to finding the n-th figure of a. After the (n— 1)-th sectionis finished a double
colon :: is printed after all the symbols, and the succeeding work is done
wholly on the squares to the right of this double colon. The first step is to
write the letter “ A >’ followed by the formula (A,) and then « B” followed
by (B,). The machine ¥, then starts to do the work of), but whenever
a provable formula is found, this formula is compared with (A,) and with
(B,). Ifitisthesame formula as (A,), then the figure <1 is printed, and
the n-th sectionis finished. Ifitis (B,), then 0 is printed and the section
is finished. If it is different from both, then the work of ¥ is continued
from the point at which it had been abandoned. Sooner or later one of
the formulae (A,) or (B,) is reached; this follows from our hypotheses
about a and ¥, and the known nature of JC. Hence the n-th section will
eventually be finished. I, is circle-free; a is computable.

It can also be shown that the numbers a definable in this way by the use
of axioms include all the computable numbers. This is done by describing
computing machines in terms of the function calculus.

It must be remembered that we have attached rather a special meaning
to the phrase “ % defines o ”’. The computable numbers do not include all
(in the ordinary sense) definable numbers. Let & be a sequence whose
n-th figure is 1 or 0 according as n is or is not satisfactory. It is animme-
diate consequence of the theorem of § 8 that 8 is not computable. It is (so
far as we know at present) possible that any assigned number of figures of §
can be calculated, but not by a uniform process. When sufficiently many
figures of 8 have been calculated, an essentially new method is necessary in
order to obtain more figures.

III. This may be regarded as a modification of I or as a corollary of II.

We suppose, asin I, that the computationis carried out on a tape ; but we
avoid introducing the ‘‘state of mind”’ by considering a more physical
and definite counterpart of it. It is always possible for the computer to
break off from his work, to go away and forget all about it, and later to come
back and go on withit. If he does this he must leave a note of instructions
(written in some standard form) explaining how the work is to be con-
tinued. This note is the counterpart of the “state of mind”’. We will
suppose that the computer works in such a desultory manner that he never
does more than one step at a sitting. The note of instructions must enable
him to carry out one step and write the next note. Thus the state of progress
of the computation at any stage is completely determined by the note of

254 A. M. TuriNG [Nov. 12,

instructions and the symbols on the tape. That is, the state of the system
may be described by a single expression (sequence of symbols), consisting
of the symbols on the tape followed by A (which we suppose not to appear
elsewhere) and then by the note of instructions. This expression may be
called the ‘“state formula”. We know that the state formula at any
given stage is determined by the state formula before the last step was
made, and we assume that the relation of these two formulae is expressible
in the functional calculus. In other words, we assume that there is an
axiom 2 which expresses the rules governing the behaviour of the
computer, in terms of the relation of the state formula at any stage to the
state formula at the preceding stage. If this is so, we can construct a
machine to write down the successive state formulae, and hence to
compute the required number.

10. Examples of large classes of mumbers which are computable.

It will be useful to begin with definitions of a computable function of
an integral variable and of a computable variable, etc. There are many
equivalent ways of defining a computable function of an integral
variable. The simplest is, possibly, as follows. If y is a computable
sequence in which 0 appears infinitely} often, and » is an integer, then let
us define £(y, ») to be the number of figures 1 between the n-th and the
(n+1)-th figure 0 in y. Then ¢(n) is computable if, for all » and some y,
$(n)=£(y, m). An equivalent definition is this. Let H(z, y) mean
$(x)=1y. Then, if we can find a contradiction-free axiom %,, such that
A,— P, and if for each integer n there exists an integer NV, such that

QI¢ & F® > H (4™, u(d:(n)))’

and such that, if m £ ¢(n), then, for some N’,
Uy & FO)— (—H (u, um),

then ¢ may be said to be a computable function.

We cannot define general computable functions of a real variable, since
there is no general method of describing a real number, but we can define
a computable function of a computable variable. If n is satisfactory,
let vy, be the number computed by .1l (n), and let

a, = tan (v(y,—3)),

t If Al computes y, then the problem whether A prints O infinitely often is of the
same character as the problem whether AL is circle-free.

1936.] ON COMPUTABLE NUMBERS. 255

unless v, =0 or y, =1, in either of which cases a,=0. Then, as n
runs through the satisfactory numbers, a, runs through the computable
numberst. Now let ¢(n) be a computable function which can be
shown to be such that for any satisfactory argument its value is satis-
factoryl. Then the function f, defined by f(a,) = ay,, is a computable
function and all computable functions of a computable variable are

expressible in this form.

Similar definitions may be given of computable functions of several
variables, computable-valued functions of an integral variable, etc.

I shall enunciate a number of theorems about computability, but I
shall prove only (ii) and a theorem similar to (iii).

(i) A computable function of a computable function of an integral or
computable variable is computable.

(t1) Any function of an integral variable defined recursively in terms
of computable functions is computable. I.e.if ¢(m, n) is computable, and
7 is some integer, then 7(n) is computable, where

7(0) =",
n(n) =g (n, n(n—1)).

(iii) If ¢ (m, n) is a computable function of two integral variables, then
p g
¢(m, n) is a computable function of n.

(iv) If #(n) is a computable function whose value is always 0 or 1, then
the sequence whose n-th figure is ¢(n) is computable.

Dedekind’s theorem does not hold in the ordinary form if we replace
“‘real”’ throughout by ““computable’’. But it holds in the following form :

(v) If G(a) is a propositional function of the computable numbers and
(@) (3a)(3p)!G(a) & (—G8))},
(B) G(a) & (—G(B))>(a<p),

and there is a general process for determining the truth value of G(a), then

t A function @, may be defined in many other ways so as to run through the
computable numbers.

} Although it is not possible to find a general process for determining whether a given
number is satisfactory, ‘it is often possible to show that certain classes of numbers are
satisfactory.

256 A. M. TurivG [Nov. 12,

there is a computable number ¢ such that
Ga)>a <&,
—G(a)>a =€

In other words, the theorem holds for any section of the computables.
such that there is a general process for determining to which class a given
number belongs.

Owing to this restriction of Dedekind’s theorem, we cannot say that a
computable bounded increasing sequence of computable numbers has a
computable limit. This may possibly be understood by considering a
sequence such as

— —1

'__'17 '—Z]i: —%) 8 16°?

ol

3 eee e

On the other hand, (v) enables us to prove

(vi) If a and B are computable and a < f and ¢(a) <0 < ¢(B), where
#(a) is a computable increasing continuous function, then there is a unique
computable number y, satisfying a <<y << and ¢(y) =0.

Computable convergence.

We shall say that a sequence B, of computable numbers converges
computably if there is a computable integral valued function N (e) of the
computable variable €, such that we can show that, if e > 0 and n > N (e)
and m > N (¢), then |B,—B.| < e.

We can then show that

(vii) A power series whose coefficients form a computable sequence of
computable numbers is computably convergent at all computable points
in the interior of its interval of convergence.

(viii) The limit of a computably convergent sequence is computable.
And with the obvious definition of ““uniformly computably convergent”’:

(ix) The limit of a uniformly computably convergent computable
sequence of computable functions is a computable function. Hence

(x) The sum of a power series whose coefficients form a computable
sequence is a computable function in the interior of its interval of

convergence.
From (viii) and 7 =4(1—4+3—...) we deduce that = is computable.

Frome= 141+ % + él—' +... we deduce that e is computable.

1936.] ON COMPUTABLE NUMBERS. 257

From (vi) we deduce that all real algebraic numbers are computable.

From (vi) and (x) we deduce that the real zeros of the Bessel functions
are computable.

Proof of (ii).

Let H(z, y) mean “y(z)=y”, and let K(z, y, 2) mean “(z, y)=2".
U, is the axiom for ¢(z, y). We take U, to be
Uy & P& (F,9)>0,y)) & (G, y) & Gy, 2)> Gz, 2))

& (FO—>H(u, u?)) & (F(v, w) & H(v, ©) & K (w, 2, 2)>H (w, 2))

& [,H(w, z) & G(z, t) v G(t, z)—>(—H(w, t))].

I shall not give the proof of consistency of %,. Such a proof may be
constructed by the methods used in Hilbert and Bernays, Grundlagen der
Mathematik (Berlin, 1934), p. 209 et seg. The consistency is also cleax
from the meaning.

Suppose that, for some n, N, we have shown

A, & F® — H (w1, g(atn=D)y,
then, for some M,
Uy & FOD— K (0, qurn=1) g, (itm))
U, & FO— F(um=D, 4®) & H (u®=D, o(nn=1))

& K (um, gu(rn=1)) - 40}y,
and
A, & FOD o [F (™D,) & H (um=D), gn(n=1)))

& K (wm, wo=D) g 00}y —s F (40, ()],

Hence A, & FOD > H (u, w)),
Also U, & FO— H (u, w1®).
Hence for each n some formula of the form

U, & FOD > H (um, ylnm))
is provable. Also, if M' > M and M’ >=m and m % n(u), then

U, & FM) G(wr(), ym) y G (um), y1m)
S8ER. 2. VOL. 42. No. 2145, S

258 A. M. Turing [Nov. 12,

and
", & FM)— [{G‘(u(ﬂ(”’), u™) y G (u™, wm)
& H (u™), gt} (— H (u™, u(m)))] .
Hence A, & FOO > (—H(um, um)).

The conditions of our second definition of a computable function are
therefore satisfied. Consequently 5 is a computable function.

Proof of a modified form of (iii).

Suppose that we are given a machine 9\, which, starting with a tape
bearing on it o9 followed by a sequence of any number of letters ¢ F’’ on
F-squares and in the m-configuration b, will compute a sequence y,
depending on the number n of letters < F . If ¢,(m) is the m-th figure of
V., then the sequence B whose n-th figure is ¢, (z) is computable.

We suppose that the table for 9 has been written out in such a way
that in each line only one operation appears in the operations column. We
also suppose that Z, ©, 0, and 1 do not occur in the table, and we replace
o throughout by ©, 0 by 0, and 1 by 1. Further substitutions are then
made. Any line of form

b} a PO B
we replace by
pi a PO re(B, u, A, k)
and any line of the form
pl a P1 B
by bl a PI re(B, v, h, k)
and we add to the table the following lines:
u pe(uy, 0)
1y R, Pk, R, PO, R, PO u,
Uy re(ug, ug, k, A)
ug pe(uy, F)
and similar lines with v for u and 1 for 0 together with the following line
¢ R, PE, R, Ph b.

We then have the table for the machine %" which computes B. The
initial m-configuration is ¢, and the initial scanned symbol is the second o.

1936.] ON COMPUTABLE NUMBERS. 259

11. Application to the Entscheidungsproblem.

The results of §8 have some important applications. In particular, they
can be used to show that the Hilbert Entscheidungsproblem can have no
solution. TFor the present I shall confine myself to proving this particular
theorem. For the formulation of this problem I must refer the reader to
Hilbert and Ackermann’s Grundziige der Theoretischen Logik (Berlin,
1931), chapter 3.

I propose, therefore, to show that there can be no general process for
determining whether a given formula % of the functional calculus K is
provable, i.e. that there can be no machine which, supplied with any one
U of these formulae, will eventually say whether % is provable.

It should perhaps be remarked that what I shall prove is quite different

from the well-known results of Godelt. Godel has shown that (in the forma-
lism of Principia Mathematica) there are propositions 2% such that neither

9 nor —% is provable. As a consequence of this, it is shown that no proof
-of consistency of Principia Mathematica (or of K) can be given within that
formalism. On the other hand, I shall show that there is no general method
which tells whether a given formula ¥ is provable in K, or, what comes to
the same, whether the system consisting of K with —2 adjoined as an
extra axiom is consistent.

If the negation of what Godel has shown had been proved, ¢.e. if, for each
A, either Y or — U is provable, then we should have an immediate solution
of the Entscheidungsproblem. For we can invent a machine J¢ which will
prove consecutively all provable formulae. Sooner or later JC will reach
either ¥ or — Y. If it reaches U, then we know that U is provable. Ifit
reaches — ¥, then, since K is consistent (Hilbert and Ackermann, p. 65), we
know that % is not provable.

Owing to the absence of integers in K the proofs appear somewhat
lengthy. The underlying ideas are quite straightforward.

Corresponding to each computing machine .\l we construct a formula
Un (Al) and we show that, if there is a general method for determining
whether Un (Al) is provable, then there is a general method for deter-
mining whether Al ever prints 0.

The interpretations of the propositional functions involved are as
follows :

R (x, y) is to be interpreted as ““in the complete configuration z (of
M) the symbol on the square y is S”.

t Loc. cit.

260 A. M. Tormwe [Nov. 12,
I(z, y) is to be interpreted as ““in the complete configuration z the
square y is scanned .

K, (z)is to be interpreted as “in the complete configuration z the
m-configuration is g,,.

F(z, y) is to be interpreted as *“y is the immediate successor of z .

Inst {g;S; 8, Lq;} is to be an abbreviation for
7 ! (7 Q. ! ’
(v, 9, ', y') {(By, y) & I(z,) & K, (0) & Fla, @) & ', 9))
N (I(a;', y) & R (@', y) & Ko (')

& (z) [F(y', z)v (st(x, z2)—> Rg (2, z))])}
Inst {¢;S; S, Rq} and Inst{gS,;S,Ng}

are to be abbreviations for other similarly constructed expressions.

Let us put the description of .1l into the first standard form of §6. This
description consists of a number of expressions such as “¢; S, 8 Lg,” (or
with R or N substituted for L). Let us form all the corresponding expres-
sions such as Inst{g;S;S, Lg,} and take their logical sum. This we call
Des (-11).

The formula Un (.11) is to be

(30) [N (u) & (2) (N (2) > (32) Fw, @)
& (g,) (Fly, 2)>N(y) & N(2)) & (y) Bs, (v,)
& I(u, u) & Ky (u) & Des(.,u)]
—+(3s) (34) [N (s) & N(t) & Rs,(s,).

[N(u) & ... & Des (11)] may be abbreviated to A(.1\).

When we substitute the meanings suggested on p. 259—-60 we find that
Un (1) has the interpretation ““in some complete configuration of A\, §,;
(i.e. 0) appears on the tape”. Corresponding to this I prove that

(@) If S, appears on the tape in some complete configuration of . ll, then
Un (W) is provable.

(b) If Un(-\l) is provable, then S, appears on the tape in some complete
configuration of .\i.

When this has been done, the remainder of the theorem is trivial.

1936.] ON COMPUTABLE NUMBERS. 261

Lemma 1. If S, appears on the tape in some complete configuration of
M, then Un (AL) 2s provable.

We have to show how to prove Un (.IL). Let us suppose that in the
n-th complete configuration the sequence of symbols on the tape is

Srn, 0 Syn, 195 +++> Srin, n» followed by nothing but blanks, and that the
scanned symbol is the ¢(n)-th, and that the m-configuration is ¢,,. Then
we may form the proposition

RS"("v “)(u(n)’ u) & 'RSr(n,l)(u(n)’ u’) & v & 'Rsp(n,n,(u(n)’ u()l))
& I(um, wl™) & Ky - (u™)
& (y)F((y, w)v F(u, y) vF@', y)v...v FuD, y)v R, (u, y)),

which we may abbreviate to CC,,.

As Dbefore, F(u, w) & F(u', v'') & ... & F(u"Y, u®) is abbreviated
to Fo,

I shall show that all formulae of the form A(.\\) & F™— CC,, (abbre-
viated to CF,) are provable. The meaning of CF,, is ‘“ The n-th complete
configuration of .l is so and so”’, where ‘““so and so’’ stands for the actual
n-th complete configuration of .l.. That CF, should be provable is
therefore to be expected.

CF s certainly provable, for in the complete configuration the symbols
are all blanks, the m-configuration is ¢;, and the scanned square is u, %.e.
C0C, is

(.7/) R,Su(u, ?/) & I(ur u) & qu(u)‘
A(MN)—>CC, is then trivial.

We next show that CF,—CF,, is provable for each n. There are
three cases to consider, according as in the move from the n-th to the
(n+1)-th configuration the machine moves to left or to right or remains
stationary. We suppose that the first case applies, ¢.e. the machine
moves to the left. A similar argument applies in the other cases. If

'r(n, i(n)) =a, r (n—i—l, i(n—}-l)) =c, k(i(n)) =b, and k (i(n—l—l)) =d,
then Des (-Al) must include Inst {g, S, S; L ¢.} as one of its terms, .e.

Des (M) > Inst {q, S, S; Lq.}.
Hence A(A) & FtD—TInst {q, S ,8q L g} & FmtD,
But Inst{q, 8, 8; Lg} & FtV—(CC,—-CC,,)
is provable, and so therefore is

A(\) & Fo 5 (CCp > CChyy)

262 A. M. Turing [Nov. 12,

and (4(M) & Fv 5 00,) > (A(M) & Fd 00,),
ie. CF,~CF,,,.

CF, is provable for each n. Now it is the assumption of this lemma
that S, appears somewhere, in some complete configuration, in the sequence
of symbols printed by Al; that is, for some integers N, K, CCy has
R (w™, 4K)) as one of its terms, and therefore CCy— Rg (w™, w®) is
provable. We have then

CCy— Rg (u™, w00)
and A(N) & FN > CCN,
We also have
(3u) A (V)= (3u) (3u) ... (3u®) (A(~“') & F(N)),
where N’ =max (N, K). And so
(Bu) A (W)= (Fu) (3u') ... (3ud?) Rg (1), wk),
(Fu) A ()= (Fu®) (FuB) Ry (u, uB),
(Fu) A ()~ (Ts) (3¢) R (s, t),
7.e. Un(-ll) is provable.

This completes the proof of Lemma 1.

Lemma 2. If Un(.\l) s provable, then S, appears on the tape in some
complete configuration of L.

If we substitute any propositional functions for function variables in
a provable formula, we obtain a true proposition. In particular, if we
substitute the meanings tabulated on pp. 259-260 in Un(.ll), we obtain a
true proposition with the meaning ¢ §; appears somewhere on the tape in
some complete configuration of .17,

We are now in a position to show that the Entscheidungsproblem cannot
be solved. Let us suppose the contrary. Then there is a general
(mechanical) process for determining whether Un(.ll) is provable. By
Lemmas 1 and 2, this implies that there is a process for determining whether
Al ever prints 0, and this is impossible, by §8. Hence the Entscheidungs-
problem cannot be solved.

In view of the large number of particular cases of solutions of the
Entscheidungsproblem for formulae with restricted systems of quantors, it

1936.] ON COMPUTABLE NUMBERS. 263

is interesting to express Un(M) in a form in which all quantors are at the
beginning. Un(Al) is, in fact, expressible in the form

() (3) (w) (3uy) .. (3u,) D, (D)

where % contains no guantors, and » = 6. By unimportant modifications
we can obtain a formula, with all essential properties of Un(.A), which is of
form (I) with n=25.

Added 28 August, 1936.

APPENDIX.

Computability and effective calculability

The theorem that all effectively calculable (A-definable) sequences are
computable and its converse are proved below in outline. It is assumed
that the terms *“ well-formed formula ™ (W.F.F.) and ¢ conversion > as used
by Church and Kleene are understood. In the second of these proofs the
existence of several formulae is assumed without proof; these formulac
may be constructed straightforwardly with the help of, e.g., the
results of Kleene in ‘““A theory of positive integers in formal logic’’,
American Journal of Math., 57 (1935), 153-173, 219-244.

The W.F.F. representing an integer n will be denoted by &N,,. We shall
say that a sequence y whose n-th figure is ¢, (n) is A-definable or effectively
calculable if 1+¢.(u) is a A-definable function of n, 1.e. if there is a W.F.I
M, such that, for all integers =,

{MY} (N')L) conv N¢,(11)+1’

i.e. {M,} (N,) is convertible into Axy.:c(x(y)) or into Azy.x(y) according as

the n-th figure of A is 1 or 0.

To show that every A-definable sequence y is computable, we have to
show how to construct a machine to compute y. For use with machines it
is convenient to make a trivial modification in the calculus of conversion.
This alteration consists in using z, z', «’', ... as variables instead of
a,b,¢c, ... Wenow construct a machine £ which, when supplied with the
formula 3,, writes down the sequence y. The construction of £ is some-
what similar to that of the machine ¥ which proves all provable formulae
of the functional calculus. We first construct a choice machine £,, which,
if supplied with a W.F.F., M say, and suitably manipulated, obtains any
formula into which M is convertible. £, can then be modified so as to
yield an automatic machine £, which obtains successively all the formulae

264 A. M. TurinG [Nov. 12,

into which M is convertible (cf. foot-note p. 252). The machine £
includes £, as a part. The motion of the machine £ when supplied
with the formula M, is divided into sections of which the n-th is
devoted to finding the n-th figure of y. The first stage in this n-th section
is the formation of {M.}(N,). This formula is then supplied to the
machine £,, which converts it successively into various other formulae.
Each formula into which it is convertible eventually appears, and each, as
it is found, is compared with

Ax l:/\x’[{z} ({x}(x’))]], v.e. Ny,

and with » Ax [Ax’[{x}(x’)]], t.e. Ny

If it is identical with the first of these, then the machine prints the figure 1
and the n-th section is finished. If it is identical with the second, then 0
is printed and the section is finished. If it is different from both, then the
work of .L, isresumed. By hypothesis, {M }(%,,) is convertible into one of
the formulae N, or N,; consequently the n-th section will eventually be
finished, 7.e. the n-th figure of y will eventually be written down.

To prove that every computable sequence y is A-definable, we must
show how to find a formula M, such that, for all integers n,

{ﬂfw}(zvn) conv N1+¢,(n)'

Let .11 be a machine which computes y and let us take some description
of the complete configurations of .\l by means of numbers, e.g. we may take
the D.N of the complete configuration as described in §6. Let £(n) be
the D.N of the n-th complete configuration of .Al. The table for the
machine .\l gives us a relation between ¢(n—+1) and ¢(n) of the form

E(n+1) = p, (£(n)),

where p, is a function of very restricted, although not usually very simple,
forra: itis determined by the table for.il. p, isA-definable (I omit the proof
of this), ¢.e. there is a W.F.F. 4, such that, for all integers =,

{4,} (V) conv Ny y)-
Let U stand for
[{4} (V)]
where r = £(0); then, for all integers =,
{U'y} (Nn) conv N£(n)'

1936.] ON COMPUTABLE NUMBERS. 265

It may be proved that there is a formula V such that

.

conv N, if,in going from the n-th to the (n-+1)-th
complete configuration, the figure 0 is

(rinted.
{7 WV euan) } (Vo) P
conv N, if the figure 1 is printed.

(conv N3 otherwise.

Let W, stand for

o[07 (3 (@y)) @y)]

so that, for each integer n,
{{V}(Nf(n+1))} (N§(1L)) conv {W‘/} (Nn):
and let @ be a formula such that
(@) (W)} (V,) conv Ny,

where 7(s) is the s-th integer g for which {W.} (IV,) is convertible into either
N, or N,. Then, if M, stands for

o[(W} ({{@ (W)} ()],

it will have the required propertyt.

The Graduate College,
Princeton University,
New Jersey, U.S.A.

t In a complete proof of the A-definability of computable sequences it would be best to
modify this method by replacing the numerical description of the complete configurations
by a description which can be handled more easily with our apparatus. Let us choose
certain integers to represent the symbols and the m-configurations of the machine.
Suppose that in a certain complete configuration the numbers representing the successive
symbols on the tape are s, 8, ... s,, that the m-th symbol is scanned, and that the m-configur-
ation has the number ¢; then we may represent this complete configuration by the formula

[[Nh’ Nﬂz’ T Ndm-l]! [Ni’ N«!m]’ [Nd.u+1! Lty Nsn]]'

‘where [a, b] stands for Au[{ {u} (a)}(b)],

[a, b, ¢] stands for Au[{{ {u} (a) }(b) } (c)],

etc.

