
FRICTION CHEAT SHEET

// FREQUENCY AND DETUNE FUNCTIONS
void setFrequency(float frequency); // 0.0 - whatever, not sure what happens when negative :)
void setFrequency1(float frequency1);
void setFrequency2(float frequency2);
void setFrequency3(float frequency3);

void setSemitone1(int8_t semi); // -24 to 24
void setSemitone2(int8_t semi);
void setSemitone3(int8_t semi);

void setDetune(float detune); // 0.0 to whatever.
void setDetune1(float detune); // 1.0 is one octave.
void setDetune2(float detune); // best results with detune between 0.00 and 0.02
void setDetune3(float detune);

void setOsc1LFO(bool lfo); // true or false
void setOsc2LFO(bool lfo);
void setOsc3LFO(bool lfo);

void setFM1(uint8_t fm); // 0 - 127
void setFM2(uint8_t fm);
void setFM3(uint8_t fm);

void setFMOctaves(uint8_t octs); // 1 - 128
void setFM1Octaves(uint8_t octs);
void setFM2Octaves(uint8_t octs);
void setFM3Octaves(uint8_t octs);

void setFM1Source(uint8_t source); // 0 - 3 where
void setFM2Source(uint8_t source); // 0 is linear, 1 is Osc1
void setFM3Source(uint8_t source); // 2 is Osc2 and 3 is Osc3

void setFM1Shape(uint8_t shape); // 0 - 2 where
void setFM2Shape(uint8_t shape); // 0 is linear full signal
void setFM3Shape(uint8_t shape); // 1 is envelope1, 2 is envelope2

void fmToZeroHertz(bool); // true or false, if set to true the FM sounds more harmonic

void setPortamento(int32_t port); // 0 - 127

void set12bit(bool) // true or false

// WAVEFORM FUNCTIONS
void setWaveform(uint16_t waveForm); // JUST FOR 8bit WAVEFORMS
void setWaveform1(uint16_t waveForm); // 0 - 15
void setWaveform2(uint16_t waveForm); //
void setWaveform3(uint16_t waveForm); //

// SHORTNAMES FOR WAVEFORMS
SINE 0
SQUARE 1
PULSE 2
TRIANGLE 3
SAW 4
FUZZ 5
DIGI1 6
DIGI2 7
DIGI3 8
DIGI4 9
NOISE 10
DIGI6 11
TAN1 12
TAN2 13
TAN3 14
TAN4 15

// GAIN FUNCTIONS
void setGain(float value); // 0.0 - 1.0
void setGain1(float value); // 0.0 - 1.0
void setGain2(float value); // 0.0 - 1.0
void setGain3(float value); // 0.0 - 1.0

float getGain(); // 0.0 - 1.0
float getGain1(); // 0.0 - 1.0
float getGain2(); // 0.0 - 1.0
float getGain3(); // 0.0 - 1.0

// NOTE FUNCTIONS
void noteOn(uint8_t note, uint8_t vel); // 0 - 127
void noteOn(uint8_t note); // 0 - 127

void noteOff(uint8_t note); // 0 - 127
void noteOff();

float getNoteFrequency(uint8_t note); // 0 - 127

// ENVELOPE FUNCTIONS
void enableEnvelope1();
void disableEnvelope1();

void setEnv1Attack(uint8_t att); // 0 - 127
void setEnv1Decay(uint8_t dec); // 0 - 127
void setEnv1Sustain(uint8_t sus); // 0 - 127
void setEnv1Release(uint8_t rel); // 0 - 127

void enableEnvelope2();
void disableEnvelope2();

void setEnv2Attack(uint8_t att); // 0 - 127
void setEnv2Decay(uint8_t dec); // 0 - 127
void setEnv2Sustain(uint8_t sus); // 0 - 127
void setEnv2Release(uint8_t rel); // 0 - 127

//synth parameters as MIDI controller numbers
IS_12_BIT 3
CUTOFF 4 // not currently used
ZERO_HZ_FM 5
FM_OCTAVES 6
AMP_ENV 7
PORTAMENTO 8

FREQUENCY1 10
SEMITONE1 11
DETUNE1 12
GAIN1 13
WAVEFORM1 14
FM1 15
FM1_OCTAVES 16
FM1_SOURCE 17
FM1_SHAPE 18
LFO1 19

FREQUENCY2 20
SEMITONE2 21
DETUNE2 22
GAIN2 23
WAVEFORM2 24
FM2 25
FM2_OCTAVES 26
FM2_SOURCE 27
FM2_SHAPE 28
LFO2 29

FREQUENCY3 30
SEMITONE3 31
DETUNE3 32
GAIN3 33
WAVEFORM3 34
FM3 35
FM3_OCTAVES 36
FM3_SOURCE 37
FM3_SHAPE 38
LFO3 39

ENV1_ENABLE 113
ENV1_ATTACK 114
ENV1_DECAY 115
ENV1_SUSTAIN 116
ENV1_RELEASE 117

ENV2_ENABLE 123
ENV2_ATTACK 124
ENV2_DECAY 125
ENV2_SUSTAIN 126
ENV2_RELEASE 127

