647 lines
14 KiB
C++
Executable File

/*
Music.cpp - Music library
Copyright (c) 2012 Copenhagen Institute of Interaction Design.
All right reserved.
This library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser Public License for more details.
You should have received a copy of the GNU Lesser Public License
along with Foobar. If not, see <http://www.gnu.org/licenses/>.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ author: Jakob Bak
+ contact: j.bak@ciid.dk
*/
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <CFOWavetable.h>
#include <CFOMusic.h>
#include <hardwareSerial.h>
// Table of MIDI note values to frequency in Hertz
prog_uint16_t hertsTable[] PROGMEM = {8,8,9,9,10,10,11,12,12,13,14,15,16,17,18,19,20,21,23,24,25,27,29,30,32,34,36,38,41,43,46,48,51,54,58,61,65,69,73,77,82,87,92,97,103,109,116,123,130,138,146,155,164,174,184,195,207,219,233,246,261,277,293,311,329,349,369,391,415,440,466,493,523,554,587,622,659,698,739,783,830,880,932,987,1046,1108,1174,1244,1318,1396,1479,1567,1661,1760,1864,1975,2093,2217,2349,2489,2637,2793,2959,3135,3322,3520,3729,3951,4186,4434,4698,4978,5274,5587,5919,6271,6644,7040,7458,7902,8372,8869,9397,9956,10548,11175,11839,12543};
prog_uint32_t envTimeTable[] PROGMEM = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,33,34,35,36,37,38,39,41,42,43,45,46,48,49,51,53,55,57,59,61,63,65,67,70,73,75,78,81,85,88,92,96,100,104,109,114,119,125,131,138,146,154,163,172,183,195,209,225,242,261,284,310,341,379,425,482,556,654,792,998,1342,2030,4095};
float semitoneTable[] = {0.25,0.2648658,0.2806155,0.29730177,0.31498027,0.33370996,0.35355338,0.37457678,0.39685026,0.4204482,0.44544938,0.47193715,0.5,0.5297315,0.561231,0.59460354,0.62996054,0.6674199,0.70710677,0.74915355,0.7937005,0.8408964,0.8908987,0.9438743,1.0,1.0594631,1.122462,1.1892071,1.2599211,1.3348398,1.4142135,1.4983071,1.587401,1.6817929,1.7817974,1.8877486,2.0,2.1189263,2.244924,2.3784142,2.5198421,2.6696796,2.828427,2.9966142,3.174802,3.3635857,3.563595,3.7754972,4.0};
CFOMusic Music;
// Defining which pins the SPI interface is connected to.
#define SPI_SCK 5
#define SPI_MOSI 3
// timer 2 is audio interrupt timer
ISR(TIMER2_COMPA_vect) {
OCR2A = 127;
Music.synthInterrupt();
}
/////////////////////////////////////
//
// INITIALIZING FUNCTION
//
/////////////////////////////////////
void CFOMusic::init()
{
// clear interrupts. to make sure the interrupt timer doesn't start until we've set it up.
cli();
// set up syntheziser
// this is the timer 2 audio rate timer, fires an interrupt at 15625 Hz sampling rate
TIMSK2 = 1<<OCIE2A; // interrupt enable audio timer
OCR2A = 127;
TCCR2A = 2; // CTC mode, counts up to 127 then resets
TCCR2B = 0<<CS22 | 1<<CS21 | 0<<CS20;
// set up SPI port
SPCR = 0x50;
SPSR = 0x01;
// OUTPUTS
// sck + mosi + ss
DDRB = (1 << DDB2) | (1 << DDB3) | (1 << DDB5);
// dac_cs output
//DDRB = (1 << DDB2);
// DAC frame sync HIGH, so that the SPI port doesn't start wirting straight away
PORTB |= (1<<2);
// waveform setup
setSine();
// frequency setup
setFrequency(110.0f);
setSemitone1(0);
setSemitone2(0);
setSemitone3(0);
setDetune(0.0f);
// gain setup
setGain(1.0f);
setGain1(1.0f);
setGain2(1.0f);
setGain3(1.0f);
// envelope setup
setEnvStage(0);
disableEnvelope();
env = 0;
setAttack(4);
setDecay(90);
setSustain(32);
setRelease(64);
setVelSustain(0);
sei(); // global interrupt enable
Serial.println("MUSIC INITIALIZED!");
}
/////////////////////////////////////
//
// FREQUENCY AND DETUNE FUNCTIONS
//
/////////////////////////////////////
void CFOMusic::setFrequency(float freq)
{
period1 = uint16_t(((freq * semi1 * (1 + detune1 + bend)) * 65536.0) / SAMPLE_RATE);
period2 = uint16_t(((freq * semi2 * (1 + detune2 + bend)) * 65536.0) / SAMPLE_RATE);
period3 = uint16_t(((freq * semi3 * (1 + detune3 + bend)) * 65536.0) / SAMPLE_RATE);
frequency = freq;
frequency1 = freq;
frequency2 = freq;
frequency3 = freq;
}
void CFOMusic::setFrequency1(float freq)
{
frequency1 = freq;
period1 = uint16_t(((frequency1 * semi1 * (1 + detune1 + bend)) * 65536.0) / SAMPLE_RATE);
}
void CFOMusic::setFrequency2(float freq)
{
frequency2 = freq;
period2 = uint16_t(((frequency2 * semi2 * (1 + detune2 + bend)) * 65536.0) / SAMPLE_RATE);
}
void CFOMusic::setFrequency3(float freq)
{
frequency3 = freq;
period3 = uint16_t(((frequency3 * semi3 * (1 + detune3 + bend)) * 65536.0) / SAMPLE_RATE);
}
void CFOMusic::setSemitone1(int8_t semi)
{
if(-13 < semi && semi < 13){
semi1 = semitoneTable[semi+12];
} else if (semi < -12) {
semi1 = semitoneTable[0];
} else {
semi1 = semitoneTable[24];
}
period1 = uint16_t(((frequency1 * semi1 * (1 + detune1 + bend)) * 65536.0) / SAMPLE_RATE);
}
void CFOMusic::setSemitone2(int8_t semi)
{
if(-13 < semi && semi < 13){
semi2 = semitoneTable[semi+12];
} else if (semi < -12) {
semi2 = semitoneTable[0];
} else {
semi2 = semitoneTable[24];
}
period2 = uint16_t(((frequency2 * semi2 * (1 + detune2 + bend)) * 65536.0) / SAMPLE_RATE);
}
void CFOMusic::setSemitone3(int8_t semi)
{
if(-13 < semi && semi < 13){
semi3 = semitoneTable[semi+12];
} else if (semi < -12) {
semi3 = semitoneTable[0];
} else {
semi3 = semitoneTable[24];
}
period3 = uint16_t(((frequency3 * semi3 * (1 + detune3 + bend)) * 65536.0) / SAMPLE_RATE);
}
void CFOMusic::setDetune(float detune)
{
detune1 = 0.0;
detune2 = detune;
detune3 = -detune;
period2 = uint16_t(((frequency2 * semi2 * (1 + detune2 + bend)) * 65536.0) / SAMPLE_RATE);
period3 = uint16_t(((frequency3 * semi3 * (1 + detune3 + bend)) * 65536.0) / SAMPLE_RATE);
}
void CFOMusic::setDetune1(float detune)
{
detune1 = detune;
period1 = uint16_t(((frequency1 * semi1 * (1 + detune1 + bend)) * 65536.0) / SAMPLE_RATE);
}
void CFOMusic::setDetune2(float detune)
{
detune2 = detune;
period2 = uint16_t(((frequency2 * semi2 * (1 + detune2 + bend)) * 65536.0) / SAMPLE_RATE);
}
void CFOMusic::setDetune3(float detune)
{
detune3 = detune;
period3 = uint16_t(((frequency3 * semi3 * (1 + detune3 + bend)) * 65536.0) / SAMPLE_RATE);
}
void CFOMusic::pitchBend(float b)
{
bend = b;
period1 = uint16_t(((frequency1 * semi1 * (1 + detune1 + bend)) * 65536.0) / SAMPLE_RATE);
period2 = uint16_t(((frequency2 * semi2 * (1 + detune2 + bend)) * 65536.0) / SAMPLE_RATE);
period3 = uint16_t(((frequency3 * semi3 * (1 + detune3 + bend)) * 65536.0) / SAMPLE_RATE);
}
/////////////////////////////////////
//
// OSCILLATOR FUNCTIONS
//
/////////////////////////////////////
void CFOMusic::setSine()
{
sine = true;
saw = false;
square = false;
waveForm = 0;
}
void CFOMusic::setSaw()
{
sine = false;
saw = true;
square = false;
waveForm = 1;
}
void CFOMusic::setSquare()
{
sine = false;
saw = false;
square = true;
waveForm = 2;
}
/////////////////////////////////////
//
// OVERALL GAIN FUNCTIONS
//
/////////////////////////////////////
void CFOMusic::setGainFloat(float value)
{
gain = uint16_t(value * 65535);
gain1 = gain;
gain2 = gain;
gain3 = gain;
}
void CFOMusic::setGain16bit(uint16_t value)
{
gain = value;
gain1 = value;
gain2 = value;
gain3 = value;
}
void CFOMusic::setGain(float value)
{
gain = uint16_t(value * 65535);
gain1 = gain;
gain2 = gain;
gain3 = gain;
}
void CFOMusic::setGain(uint16_t value)
{
gain = value;
gain1 = value;
gain2 = value;
gain3 = value;
}
/////////////////////////////////////
//
// INDIVIDUAL GAIN FUNCTIONS
//
/////////////////////////////////////
void CFOMusic::setGain1(float value)
{
gain1 = uint16_t(value * 65535);
}
void CFOMusic::setGain2(float value)
{
gain2 = uint16_t(value * 65535);
}
void CFOMusic::setGain3(float value)
{
gain3 = uint16_t(value * 65535);
}
void CFOMusic::setGain1(uint16_t value)
{
gain1 = value;
}
void CFOMusic::setGain2(uint16_t value)
{
gain2 = value;
}
void CFOMusic::setGain3(uint16_t value)
{
gain3 = value;
}
float CFOMusic::getGainFloat()
{
return float(gain);
}
uint16_t CFOMusic::getGain()
{
return gain;
}
/////////////////////////////////////
//
// NOTE FUNCTIONS
//
/////////////////////////////////////
void CFOMusic::noteOn(uint8_t note, uint8_t vel)
{
envStage = 1;
velSustain = vel * (sustain/128);
notePlayed = note;
memcpy_P(&frequency16bit, &hertsTable[notePlayed],2);
setFrequency1(frequency16bit);
setFrequency2(frequency16bit);
setFrequency3(frequency16bit);
}
void CFOMusic::noteOn(uint8_t note)
{
envStage = 1;
velSustain = sustain;
notePlayed = note;
memcpy_P(&frequency16bit, &hertsTable[notePlayed],2);
setFrequency1(frequency16bit);
setFrequency2(frequency16bit);
setFrequency3(frequency16bit);
}
void CFOMusic::noteOff(uint8_t note)
{
if(notePlayed == note) {
envStage = 4;
}
}
void CFOMusic::noteOff()
{
envStage = 4;
}
uint16_t CFOMusic::getNoteFrequency(uint8_t note)
{
if(note > 127) note = 127;
uint16_t freq;
memcpy_P(&freq, &hertsTable[note],2);
return freq;
}
/////////////////////////////////////
//
// ENVELOPE FUNCTIONS
//
/////////////////////////////////////
void CFOMusic::enableEnvelope()
{
envelopeOn = true;
}
void CFOMusic::disableEnvelope()
{
envelopeOn = false;
}
void CFOMusic::setEnvStage(uint8_t stage)
{
envStage = stage;
}
void CFOMusic::setAttack16bit(uint16_t att)
{
attack = att;
}
void CFOMusic::setDecay16bit(uint16_t dec)
{
decay = dec;
}
void CFOMusic::setSustain16bit(uint16_t sus)
{
sustain = sus;
}
void CFOMusic::setRelease16bit(uint16_t rel)
{
release = rel;
}
void CFOMusic::setAttack(uint8_t att)
{
if(att>127) att = 127;
memcpy_P(&attack, &envTimeTable[127 - att],2);
//attack = envTimeTable[127 - att];
}
void CFOMusic::setDecay(uint8_t dec)
{
if(dec>127) dec = 127;
memcpy_P(&decay, &envTimeTable[127 - dec],2);
//decay = envTimeTable[127 - dec];
}
void CFOMusic::setSustain(uint8_t sus)
{
sustain = sus * (MAX_ENV_GAIN/128);
}
void CFOMusic::setRelease(uint8_t rel)
{
if(rel>127) rel = 127;
memcpy_P(&release, &envTimeTable[127 - rel],2);
//release = envTimeTable[127 - rel];
}
void CFOMusic::setVelSustain(uint8_t vel)
{
velSustain = vel * (sustain / 128);
}
/////////////////////////////////////
//
// AUDIO INTERRUPT SERVICE ROUTINE
//
/////////////////////////////////////
void CFOMusic::synthInterrupt()
{
// Frame sync low for SPI (making it low here so that we can measure lenght of interrupt with scope)
PORTB &= ~(1<<2);
// The accumulator (16bit) keeps track of the pitch by adding the
// the amount of "index" points that the frequency has "travelled"
// since the last sample was sent to the DAC, i.e. the current phase
// of the waveform.
accumulator1 = accumulator1 + period1;
accumulator2 = accumulator2 + period2;
accumulator3 = accumulator3 + period3;
// To use the accumulator position to find the right index in the
// waveform look-up table, we truncate it to 12bit.
index1 = accumulator1 >> 4;
index2 = accumulator2 >> 4;
index3 = accumulator3 >> 4;
// SINE WAVE
// Because the waveform look-up table resides in program memory
// we most use memcpy_P to copy the data from that table to our
// oscilator variable.
if(sine) {
memcpy_P(&oscil1, &sineTable[index1],2);
memcpy_P(&oscil2, &sineTable[index2],2);
memcpy_P(&oscil3, &sineTable[index3],2);
}
// SAWTOOTH WAVE
// Just using the index for the oscillator produces a sawtooth shaped waveform
else if(saw) {
oscil1 = index1;
oscil2 = index2;
oscil3 = index3;
}
// SQUARE WAVE
else if(square) {
oscil1 = index1;
oscil2 = index2;
oscil3 = index3;
oscil1 &= 0x0800;
oscil1 ^= 0x0100;
oscil2 &= 0x0800;
oscil2 ^= 0x0100;
oscil3 &= 0x0800;
oscil3 ^= 0x0100;
}
// The DAC formatting routine below assumes the sample to be transmitted
// is in the higher 12 bits of the 2 byte variable, so we shift the
// sample up 2 bits each which adds up to 4 bits.
// The individual gains for each oscillator is added.
sample = (oscil1 * gain1) << 2;
sample += (oscil2 * gain2) << 2;
sample += (oscil3 * gain3) << 2;
sample >>= 16;
// AMPLIFICATION ENVELOPE
// Amplification envelope is calculated here
if(envelopeOn) {
if(envStage == 1) {
env += attack;
if(MAX_ENV_GAIN < env) {
env = MAX_ENV_GAIN;
envStage = 2;
}
}
else if(envStage == 2) {
env -= decay;
if(env < velSustain || MAX_ENV_GAIN < env) {
env = velSustain;
envStage = 3;
}
}
else if (envStage == 3) {
env = velSustain;
}
else if (envStage == 4) {
env -= release;
if(MAX_ENV_GAIN < env) {
env = 0;
envStage = 0;
}
}
else if (envStage == 0) {
env = 0;
accumulator1 = 0;
accumulator2 = 0;
accumulator3 = 0;
}
} else {
env = 65535;
}
// Adding the amplification envelope (16bit) we bring it back to the 16bit frame again afterwards.
sample = (env * sample) >> 16;
// Formatting the samples to be transfered to the MCP4921 DAC
dacSPI0 = sample >> 8;
dacSPI0 >>= 4;
dacSPI0 |= 0x30;
dacSPI1 = sample >> 4;
SPCR |= (1 << MSTR);
// transmit value out the SPI port
SPDR = dacSPI0;
while (!(SPSR & (1<<SPIF))); // Maybe this can be optimised
SPDR = dacSPI1;
while (!(SPSR & (1<<SPIF))); // Maybe this can be optimised
// Frame sync high
PORTB |= (1<<2);
}